Journal Volumes


Visitors
ALL : 880,461
TODAY : 381
ONLINE : 25



















  JOURNAL DETAIL



Development of Polycaprolactone Infiltrated Anti-Tuberculosis Drug-Loaded 3D-Printed Hydroxyapatite for Localized and Sustained Drug Release in Bone and Joint Tuberculosis Treatment


Paper Type 
Contributed Paper
Title 
Development of Polycaprolactone Infiltrated Anti-Tuberculosis Drug-Loaded 3D-Printed Hydroxyapatite for Localized and Sustained Drug Release in Bone and Joint Tuberculosis Treatment
Author 
Faungchat Thammarakcharoen, Autcharaporn Srion, Watchara Chokevivat, Ruedee Hemstapat, Noppawan Phumala Morales and Jintamai Suwanprateeb
Email 
jintamai@mtec.or.th
Abstract:

     Bone and joint tuberculosis is one of extrapulmonary tuberculosis that is commonly found globally. Treatment of bone tuberculosis typically involves long term oral medication and frequently causes side effects due to its systemic administration route. In order to mitigate the side effects and to increase the performance, the use of localized medication for sustained drug release was investigated. Three first-line anti-tuberculosis drugs were loaded into three-dimensional printed hydroxyapatite (3DP HA) by vacuum infiltration and then further infiltrated by low molecular weight polycaprolactone (PCL). It was observed that PCL uniformly coated on the surface and filled the inside pores of all infiltrated samples and did not much affect the drug loading content in the samples. Rifampicin (RIF) loaded samples, either non-infiltrated or infiltrated ones, displayed longer sustained release than those of isoniazid (INH) or pyrazinamide (PZA) loaded samples, but the release of infiltrated samples could be further enhanced in terms of released content and duration. These were related to the drug solubility and diffusion distance of drugs in the samples. Bioactivity of the drug-loaded samples was also not hampered as the apatite layer was seen to grow on the surface ascertaining its role as a dual functioned bone graft.

Start & End Page 
105 - 121
Received Date 
2021-03-20
Revised Date 
2021-06-11
Accepted Date 
2021-06-12
Full Text 
  Download
Keyword 
bone and joint tuberculosis, hydroxyapatite, sustained release, 3D printing, polycaprolactone
Volume 
Vol.49 No.1 (Special Issue I : Jan 2022)
DOI 
https://doi.org/10.12982/CMJS.2022.009
SDGs
View:617 Download:221

Search in this journal


Document Search


Author Search

A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Popular Search






Chiang Mai Journal of Science

Faculty of Science, Chiang Mai University
239 Huaykaew Road, Tumbol Suthep, Amphur Muang, Chiang Mai 50200 THAILAND
Tel: +6653-943-467




Faculty of Science,
Chiang Mai University




EMAIL
cmjs@cmu.ac.th




Copyrights © Since 2021 All Rights Reserved by Chiang Mai Journal of Science