Chiang Mai Journal of Science

Print ISSN: 0125-2526 | eISSN : 2465-3845

1,647
Articles
Q3 0.80
Impact Factor
Q3 1.3
CiteScore
7 days
Avg. First Decision

RNA family classification using the conditional random fields model

Sitthichoke Subpaiboonkit[a], Chinae Thammarongtham[b] and Jeerayut Chaijaruwanich*[a,b,d]
* Author for corresponding; e-mail address: jeerayut@science.cmu.ac.th
Volume: Vol.39 No.1 (JANUARY 2012)
Research Article
DOI:
Received: 21 June 2011, Revised: -, Accepted: 6 October 2011, Published: -

Citation: Subpaiboonkit S., Thammarongtham C. and Chaijaruwanich[a,b,d] J., RNA family classification using the conditional random fields model, Chiang Mai Journal of Science, 2012; 39(1): 1-7.

Abstract

RNA  family  classification  is  one  of  the  necessary  tasks  needed  to  characterize  sequenced  genomes. RNA  families  are  defined  by  member  sequences  which  perform  the  same  function  in  different  species. Such  functions  have  a  strong  relationship  with  RNA  secondary  structures  but  not  the  primary  sequence. Thus  RNA  sequences  alone  are  not  sufficient  to  classify  RNA  families. Here, we  focus  on  computational  RNA  family  classification  by  exploring  primary  sequences  with  RNA  secondary  structures  as  the  selected  feature  to  classify  the  RNA  family  using  the  method  of conditional  random fields  (CRFs). This  model  treats  RNA  data  sets  with  optimal  F-score  prediction  between  98.77% - 99.32%  for different  RNA  families.

Keywords: RNA family classification, Conditional random fields, bioinformatics, machine learning

Related Articles

Genome-Wide Identification and Analysis of Aldehyde Dehydrogenase (ALDH) Gene Superfamily in Cannabis sativa L.
DOI: 10.12982/CMJS.2026.022.

Yan Lv, Liguo Zhang, Menghan Liu, Yueqi Huang and Mingfang Feng*

Vol.53 No.1 (January 2026)
Research Article View: 51 Download: 3
A New Approach for Machine Learning-Based Recognition of Meat Species Using a BME688 Gas Sensors Matrix
DOI: 10.12982/CMJS.2025.031.

Nursel Söylemez Milli, İsmail Hakkı Parlak and Mehmet Milli

Vol.52 No.3 (May 2025)
Research Article View: 803 Download: 821
Research on Prediction of the Digital Economy Index Based on Improved Sparrow Search Algorithm
DOI: 10.12982/CMJS.2025.017.

Qing Hu and Fenhua Zhu

Vol.52 No.2 (March 2025)
Research Article View: 839 Download: 287
Development and Validation of a Predictive Model for Herbaceous Plant Growth Based on Water-Sediment Stress
DOI: 10.12982/CMJS.2024.095.

Zhen Liu, Yiwei Fu, Jiangsong Jiang, Ya Huang, Dong Li, Yikun Yue, Shaochun Yuan and Chengzhi Wang

Vol.51 No.6 (November 2024)
Research Article View: 993 Download: 507
CFPG: Creating a Common Fungal Pathogenic Genes Database through Data Mining
DOI: 10.12982/CMJS.2024.038.

Kenneth Lee Shean Tan and Saharuddin Bin Mohamad

Vol.51 No.3 (May 2024)
Research Article View: 2,357 Download: 1,130
Constructing Biological Knowledge Base using Named Entities Recognition and Term Collocation
page: 661 - 671

Supattanawaree Thipcharoen [a,b], Watshara Shoombuatong [c], Samerkae Somhom [b], Rattasit Sukhahuta [b], Jeerayut Chaijaruwanich*[a,b]

Vol.43 No.3 (APRIL 2016)
Research Article View: 922 Download: 268
An Improved Algorithm for Protein Structural Comparison Based on Graph Theoretical Approach
page: 71 - 81

Cheng-Hsien Hsu [a], Sheng-Lung Peng*[b], and Yu-Wei Tsay [b]

Vol.38 (SPECIAL ISSUE 2011)
Research Article View: 1,961 Download: 279
Outline
Figures