Journal Volumes


Visitors
ALL : 1,853,977
TODAY : 7,177
ONLINE : 212



















  JOURNAL DETAIL



RNA family classification using the conditional random fields model


Paper Type 
Contributed Paper
Title 
RNA family classification using the conditional random fields model
Author 
Sitthichoke Subpaiboonkit[a], Chinae Thammarongtham[b] and Jeerayut Chaijaruwanich*[a,b,d]
Email 
jeerayut@science.cmu.ac.th
Abstract:

RNA  family  classification  is  one  of  the  necessary  tasks  needed  to  characterize  sequenced  genomes. RNA  families  are  defined  by  member  sequences  which  perform  the  same  function  in  different  species. Such  functions  have  a  strong  relationship  with  RNA  secondary  structures  but  not  the  primary  sequence. Thus  RNA  sequences  alone  are  not  sufficient  to  classify  RNA  families. Here, we  focus  on  computational  RNA  family  classification  by  exploring  primary  sequences  with  RNA  secondary  structures  as  the  selected  feature  to  classify  the  RNA  family  using  the  method  of conditional  random fields  (CRFs). This  model  treats  RNA  data  sets  with  optimal  F-score  prediction  between  98.77% - 99.32%  for different  RNA  families.

Start & End Page 
1 - 7
Received Date 
2011-06-21
Revised Date 
Accepted Date 
2011-10-06
Full Text 
  Download
Keyword 
RNA family classification, Conditional random fields, bioinformatics, machine learning
Volume 
Vol.39 No.1 (JANUARY 2012)
DOI 
Citation 
Subpaiboonkit S., Thammarongtham C. and Chaijaruwanich[a,b,d] J., RNA family classification using the conditional random fields model, Chiang Mai J. Sci., 2012; 39(1): 1-7.
SDGs
View:793 Download:2,922

  RELATED ARTICLE

CFPG: Creating a Common Fungal Pathogenic Genes Database through Data Mining
Article ID: e2024038
Author:Kenneth Lee Shean Tan and Saharuddin Bin Mohamad
Vol.51 No.3 (May 2024) View: 917 Download:212
Constructing Biological Knowledge Base using Named Entities Recognition and Term Collocation
page: 661 - 671
Author:Supattanawaree Thipcharoen [a,b], Watshara Shoombuatong [c], Samerkae Somhom [b], Rattasit Sukhahuta [b], Jeerayut Chaijaruwanich*[a,b]
Vol.43 No.3 (APRIL 2016) View: 578 Download:150
An Improved Algorithm for Protein Structural Comparison Based on Graph Theoretical Approach
page: 71 - 81
Author:Cheng-Hsien Hsu [a], Sheng-Lung Peng*[b], and Yu-Wei Tsay [b]
Vol.38 (SPECIAL ISSUE 2011) View: 547 Download:167



Search in this journal


Document Search


Author Search

A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Popular Search






Chiang Mai Journal of Science

Faculty of Science, Chiang Mai University
239 Huaykaew Road, Tumbol Suthep, Amphur Muang, Chiang Mai 50200 THAILAND
Tel: +6653-943-467




Faculty of Science,
Chiang Mai University




EMAIL
cmjs@cmu.ac.th




Copyrights © Since 2021 All Rights Reserved by Chiang Mai Journal of Science