Journal Volumes


Visitors
ALL : 874,791
TODAY : 735
ONLINE : 87



















  JOURNAL DETAIL



Energy Conversion Efficiency Improvement of ZnO Dye-sensitized Solar Cells by Dye Re-adsorption and N-P Junction Technique


Paper Type 
Contributed Paper
Title 
Energy Conversion Efficiency Improvement of ZnO Dye-sensitized Solar Cells by Dye Re-adsorption and N-P Junction Technique
Author 
Surat Futemvong [a,b], Niyom Hongsith [b,d], Duangmanee Wongratanaphisan [b,c], Atcharawon Gardchare
Email 
supab99@gmail.com
Abstract:

In this work, ZnO Dye-sensitized solar cells (DSSCs) with dye re-adsorption technique and NiO thin films coated as n-p junction were investigated. The general structures of ZnO DSSCs were FTO/ZnO as a photo-electrode, Eosin-Y as a dye sensitizer, iodine/iodide solution as an electrolyte and Pt/FTO as a counter-electrode. For dye re-adsorption technique, ZnO photo-electrodes were soaked into Eosin-Y solutions as dye adsorption, then soaked into ethanol as dye desorption (3-step sequence). From the absorption spectra, the absorbance values depended on the dye re-adsorption steps suggesting the removal of the excess dye molecules during the process. For n-p junction, NiO thin films were coated on ZnO with 0.6 mg to form a barrier layer in photo-electrode called ZnO/NiO. The optimum conditions for the dye re-adsorption technique were selected with n-p junction DSSCs. The DSSCs were investigated by using J-V measurement and electrochemical impedance spectroscopy. It was found that ZnO and ZnO/NiO DSSCs with first dye re-adsorption exhibited the highest energy conversion efficiency of 0.99% and 1.10%, respectively. The improvement of energy conversion efficiency due to dye re-adsorption and n-p junction can be explained in terms of reduction of dye aggregation and decrease of charge recombination in photo-electrode.

Start & End Page 
783 - 788
Received Date 
2012-08-01
Revised Date 
Accepted Date 
2012-12-07
Full Text 
  Download
Keyword 
dye-sensitized solar cell, energy conversion efficiency, zinc oxide, nickel oxide, dye re-adsorption
Volume 
Vol.40 No.4 (OCTOBER 2013)
DOI 
SDGs
View:537 Download:147

Search in this journal


Document Search


Author Search

A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Popular Search






Chiang Mai Journal of Science

Faculty of Science, Chiang Mai University
239 Huaykaew Road, Tumbol Suthep, Amphur Muang, Chiang Mai 50200 THAILAND
Tel: +6653-943-467




Faculty of Science,
Chiang Mai University




EMAIL
cmjs@cmu.ac.th




Copyrights © Since 2021 All Rights Reserved by Chiang Mai Journal of Science