Journal Volumes


  JOURNAL DETAIL



A Bias-Reduced Estimator for Negative Binomial Regression with an Application to CO2 Emissions Data


Paper Type 
Contributed Paper
Title 
A Bias-Reduced Estimator for Negative Binomial Regression with an Application to CO2 Emissions Data
Author 
Fatimah M. Alghamdi, Gamal A. Abd-Elmougod, M. A. El-Qurashi, Ehab M. Almetwally, Ahmed M. Gemeay and Ali T. Hammad
Email 
ali.taha@science.tanta.edu.eg
Abstract:

     The negative binomial regression model (NBRM) is a widely used approach for analyzing non-negative count data, particularly when overdispersion is present. Parameter estimation in this model typically relies on the maximum likelihood estimator (MLE), which can produce unstable and unreliable results under multicollinearity. To address this issue, we present a hybrid version of the Kibria-Lukman estimator adapted for NBRM. We evaluate the efficacy of our proposed estimator compared to established methods via simulation studies and a practical application for estimating CO₂ emissions from vehicles in Canada. Our results show that the hybrid Kibria-Lukman estimator is more accurate and stable than traditional methods. This makes it a promising way to deal with multicollinearity in count data analysis.

Graphical Abstract:
Article ID
e2025085
Received Date 
2025-06-19
Revised Date 
2025-09-02
Accepted Date 
2025-09-09
Keyword 
negative binomial regression model, biased estimators, CO2 emission data, multicollinearity, Hybrid Kibria-Lukman estimator
Volume 
Vol.52 No.6 In progress (November 2025). This issue is in progress but contains articles that are final and fully citable.
DOI 
https://doi.org/10.12982/CMJS.2025.085
Citation 

Alghamdi F.M., Abd-Elmougod G.A., El-Qurashi M.A., Almetwally E.M., Gemeay A.M. and Hammad A.T., A bias-reduced estimator for negative binomial regression with an application to CO2 emissions data. Chiang Mai Journal of Science, 2025; 52(6): e2025085. DOI 10.12982/CMJS.2025.0085.

View:20 Download:0

  RELATED ARTICLE

New Class of Kibria–Lukman Estimator for Addressing Multicollinearity in Poisson Regression Model
Article ID: e2025064
Author:Ohud A. Alqasem, Ali T. Hammad, M.M. Abd El-Raouf and Ahmed M. Gemeay
Vol.52 No.5 (September 2025) View: 372 Download:139
Housing Price Prediction by Divided Regression Analysis
page: 1669 - 1682
Author:Yann Ling Goh, Yeh Huann Goh, Chun-Chieh Yip and Kooi Huat Ng
Vol.49 No.6 (November 2022) View: 1,515 Download:497
Modeling Incidence Rates of Terrorism Injuries in Southern Thailand
page: 743 - 749
Author:Sumpunt Khongmark*[a] and Metta Kuning [b]
Vol.40 No.4 (OCTOBER 2013) View: 685 Download:265



Search in this journal


Document Search


Author Search

A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Popular Search






Chiang Mai Journal of Science

Faculty of Science, Chiang Mai University
239 Huaykaew Road, Tumbol Suthep, Amphur Muang, Chiang Mai 50200 THAILAND
Tel: +6653-943-467




Faculty of Science,
Chiang Mai University




EMAIL
cmjs@cmu.ac.th




Copyrights © Since 2021 All Rights Reserved by Chiang Mai Journal of Science