Paper Type |
Contributed Paper |
Title |
Spatiotemporal Analysis of Ozone Concentration Using Semi-Functional Partial Linear Models |
Author |
Fatimah Alshahrani, Omar Fetitah, Ibrahim M. Almanjahie and Mohammed Kadi Attouch |
Email |
fetitah-omar@hotmail.com |
Abstract: As weather warms up in China, ozone pollution rises to the top of the list of air pollutants. In this research, we examine the spatiotemporal variability of particulate matter components using contemporary functional data analysis techniques. The technique models the yearly pollutant profiles to describe their dynamic behavior over time and location. These cutting-edge methods offer dimension reduction for better data display and permit us to forecast annual profiles for locations and years for which data are lacking. In order to accurately estimate hourly ozone concentrations for 12 stations in China over two years (2015-2016), this study set out to showcase the best prediction models currently available. To accurately predict Ozone concentration, several methods are used, including Kernel Functional Classical Estimation (KFCE), Kernel Functional Quantile estimation (KFQE), Semi-Partial Linear Functional Classical Estimation (SPLFCE), Semi-Partial Linear Functional Quantile Estimation (SPLFQE), and Semi-Partial Linear Functional Expectile Estimation (SPLFEE). These functional models were chosen based on their ability to establish a forecast region with a given level of confidence. In terms of prediction accuracy, we may conclude that the Semi-Partial linear models outperform conventional models. |
|
Article ID |
e2023075 |
Received Date |
2023-01-28 |
Revised Date |
2023-09-20 |
Accepted Date |
2023-11-02 |
Full Text |
Download |
Keyword |
functional data, classical regression, quantile regression, expectile regression, semi-partial linear functional method, nonparametric kernel estimation, ozone pollution |
Volume |
Vol.50 No.6 (November 2023) |
DOI |
https://doi.org/10.12982/CMJS.2023.075 |
Citation |
Alshahrani F., Fetitah O., Almanjahie I.M. and Attouch M.K., Spatiotemporal Analysis of Ozone Concentration Using Semi-Functional Partial Linear Models, Chiang Mai J. Sci., 2023; 50(6): e2023075. DOI 10.12982/CMJS.2023.075. |
SDGs |
|
View:456 Download:332 |