Chiang Mai J. Sci. 2008; 35(3) : 399-410
www.science.cmu.ac.th/journal-science/josci.html
Contributed Paper

Notes on the Primal Submodules

Shahabaddin E. Atani [a] and A. Yousefian Darani* [b]

[a] Department of Mathematics, University of Guilan, P.O. Box 1914, Rasht, Iran.

[b] Department of Mathematics, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran.
*Author for correspondence; e-mail: yousefian@uma.ac.ir

Received: 2 November 2006
Accepted: 9 May 2008.

ABSTRACT

In this note, we will make an intensive study of the notion of primal submodules of
a module over a commutative ring with identity. First, a number of results concerning of
primal submodules are given. Second, for a commutative ring R, the notion of primal
Multiplication (resp. generalized primal multiplication module) over R is defined. Also, the
telation among the families of weak multiplication modules, primal multiplication modules

and generalized primal multiplication modules over a commutative ring is considered.
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1.INTRODUCTION

In this note, R will denote a commutative
ring with nonzero identity, and all modules
are unitary. Primal ideals in a commutative ting
with identity have been introduced and studied
by L. Fuchs in [1] (also see [2]). The concept
primal submodules have been introduced by
D. Dauns in [3]. Also, this class of submodules
is studied extensively in [4]. The putpose of
this paper is to study some further results and
various properties of primal submodules of
an R-module M. In Section 1, we fitst give an
example (Example 2.1) in which we show that
all submodules of the Z-module E(p) are
primal, where Z denotes the set of integers.
This example also shows that a primal
submodule need be neither prime, nor
secondary and need not be an RD-submodule

too. Then we give some conditions under

which a primal submodule may be prime,
secondary and an RD-submodule (See
Theorems 2.2, 2.3 and 2.4). Submodules of
primal submodules need not be primal (see
Example 2.6); however, we show in Theotem
2.7 that under specific conditions this holds.
Also we show in Theorem 2.8 that factor
modules of primal submodules ate again
primal. Finally, we prove that if M is a finitely
generated multiplication module over a Priifer
domain R, then a submodule of M is primal
if and only if it is irreducible (see Theorem
2.13).

In section 3, we first introduce that the
notion primal multiplication module over a
commutative ring. Various properties of
primal multiplication modules ate considered.

For example, every primal multiplication
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module is weak multiplication; however, a week multiplication need not be primal multiplication
module (see Example 3.3). We show that every torsion-free primal multiplication module
over an integral domain is indecomposable (Theorem 3.9). Also, we show that primal
multiplication modules are really only of interest in indecomposable rings (see Theorem 3.13).
Finally, we introduce that the notion of generalized primal multiplication modules over a
commutative ring and we give some propetties of such modules (see Theorems 3.16 and
3.17). '

Now we define the concepts that we will use. Let R be a commutative ring, M an
R-module and N an R-submodule of M. An element 7 € R is called prime to N if rme N
(me M) implies that me N . In this case, (N:,,r)={meM|rmeN}=N. Denote by S(N)
the set of all elements of R that ate not ptime to N. A proper submodule N of M is said to
be primal if S(N) forms an ideal of R; this ideal is called the adjoint ideal P of N. In this case
we also say that N is a P-primal submodule of M (see [3, 4].

A proper submodule N of a module M over a ring R is said to be prime (P-ptime) if
rme N for ¥€ R and me M implies that cither me N or re(N:, M)=P. The set of all
ptime submodules in an R-module M is denoted Spec(M). Recall that if R is an integral domain
with the quotient field K, the rank of an R-module M (rank(M)) is defined to be the maximal
number of elements of M lineatly independent over R. We have rank M =
the dimension of the vector space KM over K. An R-module M is called a weak multiplication
module if Spec(M)=¢ ot for every prime submodule N of M we have N=IM, where I is an
ideal of R [5]. An R-module M is called a multiplication module if for each submodule
N of M, N = IM for some ideal I of R. In this case we can take I=(N:, M).

An R-module M #0 is called a secondary module (tesp. second module) provided that
for every element r € R, the R-endomorphism of M produced by multiplication by r is
either sutjective or nilpotent (tesp. either surjective or zero). This implies that ni/rad(M) = P
(resp. Ann (M) ="P') is a ptime ideal of R, and M is said to be P-secondary (resp. P-second)
[6]. Let N be an R-submodule of M. Then N is called relatively divisible submodule (ot
an RD-submodule) if N=NnrM for all e R.

2. PRIMAL SUBMODULES

In this section we list some basic propetties concerning ptimal submodules. First, consider

the following example:
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Example 2.1 1et p be a fixed prime integer and N, =Z* L {0}. Then

E(p)={aecQ/Z|a=r/p"+Z for some reZ and neN,}
is a non-zero submodule of the Z-module O/ Z. For eacht € N, set

G ={aeQ/Z|a=rl/p'+Z for some reZ}

Fot evety neN,, set &, =1/ p" + Z . Then by [7, Example 7.10], pG,,, =G,, G, is a cyclic Z-
module with G, = Za, such that P, = ar, every non-zero proper submodule H of E(p) is

of the form H = G for some ne N, and E(p) is an Artinian Z-module (it is not Noetherian)

with a strictly increasing sequence of submodules:

G,cG cG,c..cG,cG, c..

(1) By [3, Example 1.14], G, is a primal submodule of E(p). We claim that, for every
teN,, G, is a pZ-primal submodule of Ep). If pke pZ, we have pka,, =ka, €G, with
a,, 2G,. So pk is not prime toG,. Now assume that ne Z is not prime to G + Then there exists
a positive integer &># with O#a, =r/p“+ZeE(p)\G, such that na,eG,. So
n(r/p* +Zy=r'l p' + Z for some r'e Z . We may assume that rand p are coptrime. So there exists
meZ with m—rp*' =p*m. It follows that p|rn and hence p|n Thus, pZ consists exactly
of the set of elements of Z which are not prime to G, . Hence G, is a pZ-ptimal submodule
of Ep).

(2) Since pG,, =G, #G,, N pE(p)=G,, (Since E(p) is divisible), we get G,,, is not an RD-
submodule of E(p); hence by (1), a primal submodule need not be an
RD-submodule.

(3) By [8, p. 3745], the set of prime submodules of E(p) is empty. Hence by (1), a primal

submodule need not be a ptime submodule.

(4) Set M=E(2). Then M is an indecomposable 0-secondary Z-module (see [9]), but
G, is not secondary (since 3G, #G, and for every positive integer 7, 3"G, #0), hence a primal
submodule need not be a secondatry submodule. O

Now consider the following tesults:

Theorem 2.2 Let R be a commutative ring, M an R-module and N a P-primal submodule
of M. Then the following hold:

(DIf Mis P-secondary, then N is P-secondary.
(@@)If M is P-second, then N is an RD-submodule of M.
(ii)If Kis a P-secondary submodule of M, then NnK is P-secondary.

Proof. (i) Let e R. If re P, then there exists a positive integer #such that N cr'M =o. If
r¢ P, then 7M = M. It suffices to show that N 7N . Let ne N. Then there exists me M such
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that #=mm. If me N, then ris not prime to N; hence re P which is a contradiction. Therefore,

nerN, and so we have /IN=N. Thus N is secondary.

() LetreR.If reP, then PN crM =0,s0 ¥/N =0=N nrM . So suppose that r ¢ P..
Since the inclusion M c N ~rM is trivial, we will prove the reverse inclusion. Let
n=rme N N rM for some m e M . Then r prime to N gives m€ N;so nerN,and so we
have equality.

(iii) Let 7 € R. If r € P, there exists a positive integer #such that (N " K)c 'K =0.
Suppose that ¥&P; we show that r(NNK)=NnK . It is enough to show that
NAKcr(NnK).If xe NnK c K =rK , then thete exists ¢ € K with x=r. Since x€ N
and r is prime to N, we must have c€ N ; hence ce NN K. Sox=rcer(N nK), as
required. O

Let M be a module over a commutative ting R. Then by [3, Proposition B], every prime
submodule of M is primal. Furthermote, by Example 2.1, a primal submodule of M need

not be ptime; however, we have the following Theorem:

Theorem 2.3 Let N be a P-primal submodule of an R-module M. Then N is a P-ptrime
submodule of M if and only if P (N, M).

Proof. It suffices to show that if P < (N :, M), then N is a P-prime submodule of M.
By [4, Lemma 2.2], we must have P =(N:, M). Suppose that rm € N for some r€R and
meM.If mgN , then ris not prime to N; hence re P=(N:, M), as needed. O

By Example 2.1, a ptimal submodule of M need not be a RD-submodule of M; however,

we have the following theorem:

Theorem 2.4 Let R be an integral domain and let M be an R-module. Then every
0-ptimal submodule of M is an RD-submodule.

Proof. Assume that N is a 0-ptimal submodule of Mand let 7 € R. Clearly, 'N < N nrM .
For the revetse inclusion, assume that n=rme N N rM for some meM.If me N, then
nerN ; otherwise, me (N :,, ¥) \ N . Thus r is not prime to N and hence » = 0. Therefore,

n=0erN ,and so we have equality. O

Theorem 2.5 Let R be 2 commutative ting and M a finitely generated R-module. Then
every P-primal submodule of M may be embedded in a P-ptime submodule of M.

Proof. Let N be a P-primal submodule of M. It follows from [4, Lemma 2.2] and
[10, Theorem 3.3] that there exists a prime submodule K of M such that Nc K and
(K:;M)=P.O

Example 2.6 Consider Z, the set of integers, as a Z-module. We claim that 6Z is a 3Z-
primal submodule of 2Z. Cleatly every element of 3Z is not prime to 6Z. Now assume that
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neZ is not prime to 6Z. There exists a=2k€2Z\6Z such that ane6Z. So 3 divides A7z As 3
doesn’t divide £, we must have ne3Z. We have already shown that 3Z consists exactly of
those elements of Z that ate not prime to 6Z. Therefore, 67 is a 3Z-primal submodule of 2Z.
Moteover, 2Z is a 2Z-primal submodule of Z (since it is a prime submodule). However, 6Z
is not a primal submodule of Z since 2 and 3 are not prime to 6Z but 3-2=1 is prime to 6Z.
This example shows that a submodule of a primal submodule need not be again primal. O

Now consider the following theorems:

Theorem 2.7 Let R be a commutative ring, M an R-module and N and K, R-submodules
of M withK c N. Then the following holds:

(i) If K is a P-primal submodule of N and s)cP, then K is a P-primal submodule
of M.

(ii) Let (R, P) be a local ring. If K is a P-primal submodule of N and N is a primal
submodule of M, then K is a primal submodule of M.

(iii) Let K be a P-primal submodule of N and N a Q-primal submodule of M. If Qisa
nil ideal of R and K'is a primal submodule of M, then either PcQ or QOcP.

Proof. (i) If re R is not prime to K, then there exists me M\K with rme K. If me N,
then 7€ P. So suppose that m¢ N . Therefore, re S(N)c P. Now let reP. There exists
neN\K such that me K. Thus ne M \K gives ris not prime to K. Thus K is a P-primal
submodule of M.

(i) This follows from (i).

(iii) Let K'be a P'-primal submodule of M. It suffices to show thatP'=P U Q. Since the
inclusion P'cPuQ is clear, we will prove the reverse inclusion. Let re P u Q.If reP, then
there is an element ne N\K with me K, so neM\K gives r€ P'. So suppose that re Q\P.
Then there exists meM \N such that rme N.If rm ¢ K , then Q nil ideal gives there is a non-
negative integer # with 7' =0; hence »'(rm)=0eK gives r' € P which is a contradiction. So

rmeK , and hence 7 € P’ as required. O

Theorem 2.8 Let R be a commutative ring, M an R-module and N, K R-submodules of
M with K< N. Then N is a P-ptimal R-submodule of M if and only if N/Kis a P-ptimal R-
submodule of M/K.

Proof. Assume that N is a P-primal submodule of M and let r e P. Then there exists
meM\N such that rm e N; hence r(m+K)e N/K with m+K ¢ N/K . This implies that s
not prime to N/K. Now assume that € R is not prime to N/K. Then there exists m + K ¢ N/K
with (m+ K)e N/K . Hence m¢ N and rm e N which implies that ris not prime to IN; hence
P=§(N/K). Thus N/K is a P-primal submodule of M/K. The reverse implication is similar
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and we omit it. O

In [4], 2 number of results concerning primal submodules in the module of fractions are

given. Now we give further information about primal submodules in the module of fractions.

Theorem 2.9 Assume that R is a commutative ring and let N be a non-zero submodule
of an R-module M such that (N :, m) =P is a prime ideal of R for some m €M \ N . Then the
submodule

N,nM={meM|m/leN,}
is a P-primal submodule of M.

Proof. SetB=N, n M . First, we show that (B:, m)=P. On one hand, we have Pmc Nc B,
so P (B:, m). On the other hand, it is enough to show that if r& P, then r¢ (B:, m). Suppose
that re (B:, m). Then (rm)/1eN,, so (rm)/1=x/s for some xeN and s € R\ P. Therefore,
there exists 7 € R\ P such that rtsm=txe N, so rts € P a contradiction. Thus (B:, m)=P;hence
as me B, no element contained in P is prime to B. Next, we will prove that every b¢ P is prime
to B. Clearly, B c (B:,, b).For the reverse inclusion, assume that ye(B:,, b),so (by)/1=n/ceN,
for some neN and ceR\P. It follows that btcy=meN for some teR\P. As
y/1=(tn)Kbtc)e N, we get y € B, as required. I

Theorem 2.10 Let R be a commutative ring, M an R-module and N an R-submodule of
M. If (N:;M) is a P-primal ideal of R, then N=N,nM if and only if N is a
P-ptrimal submodule of M.

Proof. Assume that N=N, "M and let aeP. Since (N:, M) is a P-primal ideal of R,
we must have (N :, M):, @) D (N :; M); hence there exists re((N: M), a)\(N: M).
Thus raM c N and ¥M ¢ N, so rmg N for some me M . But a(rm) = ram e raM c N ;hence
rme (N, a)\N . Therefore, a is not prime to N. Now assume that b€ R is not prime to N.
Then (N :,, b) > N ; hence there exists me(N:, H)\N. If bgP, then, m/1=(dm)/beN,, so
neN, M =N which is a contradiction; hence b P. Thus Pis exactly the set of elements
of R which are not prime to N. So N is a P-ptimal Submodule of M. The converse follows
from [4, Proposition 2.8]. O

Let R be a commutative ring, M an R-module and § a multiplicatively closed subset of K.
For every submodule N of M, let

N,={meM |smeN for some seS}

It is clear that N is a submodule of M containing N. Also if (N:, M)nS#¢, then N, =
M. Let P be a ptime ideal of R and set §,= R\P. Then meNj, if and only if (N:;m)aP.
Furthermore N s, =Np "M where Np is the localization of N at P.
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Theorem 2.11 Let N be a finitely generated submodule of an R-module M such that
(N:yM)c P for some PeSupp(N). Then (PN);, is a P-ptimal submodule of M.

Proof. By [4, Theorem 2.3], it suffices to show that P/I=Zdv,, (M/Ky,),
where K = PN and I =(Kg, iz M). Let r+[ is an element of Zdv,,, (M /K s,)- Then there
exists a non-zero element m + K5, in M/K, such that (r + I)(m + K, )=0;hence srme K for
some s€S8p. If r¢P, then me K, which is a contradiction. Thus we must have
Zdvg, (MK )< P/I. For the other containment, assume that 7 +1 e P/I. As Np #0,
Nakayama’s Lemma gives K, © Np. So there exists n/se Ny \K, with n/1=(sn)/s€Np;
hence ne N, "M =N, Sy Moreovert, ng K 55 (otherwise, there exists € S, with €K | 5o
n/s=(n)/(ts)e K, which is a contradiction). Therefore, K;, ©Ng, . Also,
Ng, c(Ks, 4y 1) (for if nmeNg , then sneN for some s€eSp, so
s(rm)=r(sn) e PN =K ; hence rne Ks,). Therefore, K, < (Ks, 3, 1)~ So there exists
me (KSP ‘M r) \ KSP . Hence (r+I)(m +KSP)=rm +KSP =0 which implies that
r+1eZdvg,;(M/Kg,), as needed. O

In the end of this section we give some information about primal submodules of a
multiplication module. Set R = Z, and let p be a fixed prime integer. If we adapt the proof of
the well- known fact that E(p) is divisible, then we obtain evety non-zero proper submodule
of the Z-module E(p) is a multiplication module, but the Z-module E(p) itself is not
(see Example 3.15).

Proposition 2.12 Let R be a commutative ring, M a finitely generated multiplication
R-module, N=IM an R-submodule of M and a€ R. Then the following hold:

D dga)=1 ifand only if (N3, a)=N.

(ii) # is not prime to I if and only if # is not ptime to N.

(iif) I is a P-primal ideal of R if and only if N is a P-primal submodule of M.

Proof. (i) Set B =(N:, a). By assumption, we have B=(B:; M)M and

(Uig @M CB=(B:xg M)M (N :p aM)M =(I 1z )M .
Thus (I:ga)M =(N,a). If (I;za)=I, then Iz M =N=(N:,,a). If N=(N:, a), then
IM =(I:x a)M ,s0 by [11, p. 231 Corollary] we have I +(0:3 M)=(I :z @) +(0:x M); so (I ra)=1
since (O:;z M)cIc(l; a).

(ii) This follows from ().

(iii) Suppose first that N is a ptimal submodule of M and let P be the set of elements
of R that are not prime to I. We show that Pis an ideal of R. Let a,be P. Then (I a)=I and
(g b)#I.1f (I g a-b)=1,then N=(N:, a-b), whichis a contradiction by (ii). Thus, a-be P.
Similarly, if ae P and re R, then (I g ra) # I , Therefore, Pis an ideal of R. The other implication

is similar, and we omit it. O
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In general, a primal submodule need not be necessarily irreducible; however, we have the

following theorem:

Theorem 2.13 Let R be a Priifer domain, M a finitely generated multiplication R-module
and N an R-submodule of M. Then N is itreducible if and only if N is primal.

Proof. By [3, Proposition 1.9], it is enough to show that if N'is primal, then Nis itreducible.
There is an ideal I of R such that N=IM. Since N is primal, it then follows from Proposition
2.12 that I is a primal ideal of R; hence I is irreducible by [2, Lemma 2.6]. Now the assettion
follows from [12, Proposition 3.2]. O

3. PRIMAL MULTIPLICATION MODULES
In this section, our starting point is the following definition:

Definition 3.1 Let R be a commutative ring. An R-module M is called a primal
multiplication module if either M has no primal submodules or for evety primal submodule
N of M, N=IM for some ideal I of R.

It is easy to show that if M is a primal multiplication module, then N =(N 1z M)M for
every primal submodule N of M.

Proposition 3.2 Let M be a divisible R-module. Then M is primal multiplication if and

only if it has no non-zero primal submodules.

Proof. The sufficiency is clear. Conversely, assume that M is primal multiplication and let
N be a non-zero primal submodule of M. Then N=IM=M for some ideal I of R, which is a

contradiction, as required. O
Example 3.3 Let p, E(p) and be as desctibed in Example 2.1. Then:

(1) By [8, P3745], Spec(E(p)) =@ . Hence E(p) is a weak multiplication Z-module.

(2) For every 1 € Ny, Example 2.1 and Propositin 3.2 gives E(p) is not a
primal multiplication module. Thus, a weak multiplication module need not be primal
multiplication. O

If R s a ring (not necessarily an integral domain) and M is an R-module, the subset T(M)
of M is defined by

T(M)={meM |rm=0 for some O0#reRj}.

It is clear that if R is an integral domain, then T(M) is a submodule of M. In this case,
M is called torsion-free if T(M)=0, and it is called torsion if M=T(M). We recall that, by
[3, Proposition 1.9], over a commutative ring R, every prime submodule is primal; hence
evety primal multiplication module is weak multiplication. By using this fact and the results in

[5], we have the following Remarks:
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Remark 3.4 Let M be a primal multiplication module over an integral domain R. Then:

(1) If M is a non-zero torsion-free module, then rank(M)=1.
(2) If M is a torsion module, then rank(M)=0.

(3) M is either torsion ot totsion-free. O

Remark 3.5 Let M be a primal multiplication module over a commutative ring R.
Then:

(1) If Mis finitely generated, then M is multiplication.

(2) If Ris an Artinian ring, then M is cyclic. O

Theorem 3.6 Every homomorphic image of a primal multiplication module is a ptimal
multiplication.

Proof. Assume that M is a primal multiplication R-module and let f:M — M’ be an R-
epimorphism. If N’ is a ptimal submodule of M’, then Theorem 2.8 gives f '(N") is a

primal submodule of M, so there exists an ideal I of R with f™'(N")=IM ; hence N'=IM’,
and the proof is complete. O

Lemma 3.7 Let M be a primal multiplication module over an integral domain R.
If N is a 0-primal submodule of M, then N=0.

Proof. Since M is a primal multiplication module, we must have N = (N : r MM cOM =0
by [4, Lemma 2.2(i)], as requited. O

Proposition 3.8 Let M be a module over an integral domain R. If M =N ® K for some

proper R-submodules N and K with K torsion-free, then N is a 0-primal submodule
of M. ‘

Proof. Suppose that re R is not prime to N; we show that =0. Then thete exists
meM - N with rme N . We can write % = n + k for some ne N and ke K, so rkeNNK=0.
If r#0, then £ = 0 which is a contradiction. Thus, N is a 0-primal submodule of M. O

Theorem 3.9 Every torsion-free primal multiplication module over an integral domain

is indecomposable.
Proof. This follows from Lemma 3.7 and Proposition 3.8. O
Theorem 3.10 Let R be a discrete valuation ring. Then the following hold:

(i) Every non-zero primal multiplication module over R is indecomposable.

(ii) Every primal multiplication module over R is multiplication.

Proof. (i) Assume that P = pR is the unique maximal ideal of R and let M =N ®X for
some non-zero prop; submodules N and K of M. By [4, Proposition 2.11], N and K are
primal submodules of M. So there are integers 5,7 (s < #) such that N = p"M and K = p'M . In
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this case 0=N K = p'M which is a contradiction. Thus M is indecomposable.
(i) This follows from [4, Proposition 2.11]. O

We next show that primal multiplication modules are really only of interest in

indecomposable rings. We first note two facts concerning the stability of ptimalness.
Theorem 3.11 Let M be a module over a commutative ring R. Then the following hold:

(i) If § is a multiplicatively closed subset of R and M is primal multiplication, then S'M
is a primal multiplication §7R-module.

(ii) If (R, P)is a local ring, then M is a primal multiplication R-module if and only if M, is
a primal multiplication R -module.

Proof. (i) Let B be a primal submodule of S'M. Then by [4, Proposition 2.8], BNM is a

primal R-submodule of M, so there exists an ideal I of R with BNM =IM ; hence
B=ST'(BNM)=S"(M)=(S"'INS'M). Thus S'M is primal multiplication.

2) By (i), it suffices to show that if M, is a primal multiplication R -module, then M is a
primal multiplication R-module. Let N be a P™primal submodule of M. Then P'cP and
[4, Proposition 2.7] gives N, is a primal submodule of M, ; hence . Np =(Np i, MMy
Hence, by [4, Theorem 2.6], Np =((N iz M)M)p. So N =(N :xr M)M , as requited. O

Proposition 3.12 Let R=R, x R, where each R, is a commutative ring with identity. Let
M, be an R-module and let M =M;xM, be the R-module with action
(1,1, X(m,,m,) = (rm,,rm,) where r,€R, and m; €M;. Then an R-submodule N
of M is ptimal if and only if either N =N;xM, or N =M, xN,, whete N, and NN, are
ptimal submodules of M, and M, , respectively. '

Proof. Assume that N is a P-primal submodule of M. It is well-known that P =P, xR,
or P =R, xP, whete P, is a prime ideal of R, for /=7, 2. Suppose that P =P xR, and let
N=N;xN,; we show that N, =M, . If m, e M,, then (1,0)(0,m,)=(0,0)e N and
(L,0)& P gives (0, 7,) is prime to N; hence m, € N,. Thus N, =M, . Since N is a P-primal
submodule of M, we must have (N ;g M)c P and ZdVR/(N;RM)(M/N) =P/(N:zg M) by
[4, Lemma 2.2 and Theorem 2.3]. Hence

(N, g MR, =(N:g M)c P=F xR,
implies that (N, ;g M;)c P,. Also it is easy to check that

Zavy, g pary M T ND) = BIN, g M)
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Therefore, N, is a P,-primal submodule of M, by [4, Theotem 2.3]. The case where
P =R, x P, is similar.

Conversely, assume that N, is a P, primal submodule of M,. By [4, Theorem 2.3],
(N g M) S B and Zdlel(NerlMl)(Ml IN)=B (N, M)). Assume that N =N, xM,.
Then, (N:g M)=(N,:z M)XxR, B xR, and Zdvgy. ary(M /N)=P/N :z M). Hence,

again by [4, Theorem 2.3], N is a primal submodule of M. If N, is a ptimal submodule of M,
, then by a similar argument we see that M, x N, is a primal submodule of M. O

Theorem 3.13 Let R=R xR, where each R is a commutative ring with
identity. Let M, be an R -module and let M =M, xM, be the R-module with the
action (%, 7,)(m,,m,) = (ym,,r,m,) where r, e R, and m, e M, . Then M is a primal multiplication

R-module if and only if M, and M, are primal multiplication R, -modules, /=7, 2.

Proof. Assume that M is a primal multiplication R-module and let N, be a primal
submodule of M,. By Proposition 3.12, N,xM, is a primal submodule of M; hence
N, xM, =IM for some ideal I=1x1I, of R, where I is an ideal of R, /=7, 2. Then N, =IM,
gives M, is a ptimal multiplication R -module. Similarly, one can show that M, is a primal
multiplication R,-module. Conversely, assume that both M, and M, are primal multiplication.
Let N be a primal submodule of M. Then, by Proposition 3.12, we can assume that
N =N, xM,, where N, is a primal submodule of M,. As M, is primal multiplication, there
exists an ideal I, of R such that Ny = )M, . Now N = N, xM, = (I,M,)x M, =(I, x R, (M, xM,).
Thus, M is primal multiplication. O

Definition 3.14 An R-module M is called generalized primal multiplication if every
proper submodule of M is primal multiplication.

Example 3.15

Let p, E(p) and G, be as described in Example 2.1. Pick # € N, and fix it. It is easy to see
that, for every » <1, G is a pZ-primal submodule of G, Moreovet, for any m<t#, G, = p* ™G,
Hence G, is primal multiplication submodule of E(p). It follows that E(p) is a generalized
primal multiplication module. Furthermore, by Example 3.3, E(p) is not ptimal multiplication.
Therefore, a generalized primal multiplication module need not be ptimal multiplication. I

Theorem 3.16 If M is a generalized primal multiplication module over an integral

domain R, then M is either torsion or torsion-free.

Proof. Suppose that M is not torsion-free; we show that M is torsion. Otherwise, there
exists a proper submodule N/T(M) of M/T(M). We show that T(M) is a ptimal submodule
of N. Assume that 7€ R is not prime to T(M) as a submodule of N. Then, rneT'(M) for
some ngT'(M). Since T(M) is a O-prime submodule of M with (T(M):; M)=0, we must have
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r=0. Therefore, T(M) is a 0-primal submodule of N. Then N primal multiplication gives there
exists a nonzero ideal I of R with T(M)=IN. Assume that 0=ael and let neN. Then
aneT (M), so there is 0zpeR such that ban=0; hence neT(N). It follows that
N =T(N)cT(M) which is a contradiction, as required. O

Theorem 3.17 Let R be a commutative ring, M a generalized primal multiplication
R-module and N an R-submodule of M. Then M/N is also a generalized primal multiplication
R-module.

Proof. Assume that L/N is a proper submodule of M/N and let K/N be a primal
submodule of L/N. Then by Theorem 2.7, K is a primal submodule of L. Since M is
a generalized multiplication R-module, we must have K=(K:zL)L; hence

K/N=(K/N:x LIN)L/N), and the proof is complete. O
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