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ABSTRACT
	 The current study aimed to identify the core structural features of  selective p56lck 

inhibitors to design and develop molecules useful in inflammatory and autoimmune disorders. 
A set of  known p56lck inhibitors were retrieved from the data bank using PHASE program and 
a three-dimensional pharmacophore hypothesis was constructed. Six points pharmacophore 
having four common structural features such as one hydrophobic site (H), two hydrogen bond 
acceptors (A), one hydrogen bond donor (D) and two aromatic rings (R) were developed. The 
best pharmacophore hypothesis was found to be AADHRR.15 which showed a regression 
coefficient value (r2) of  0.854 and produced a statistically significant 3 dimensional Quantitative 
structure activity relationship (QSAR) model. An external validation was further carried out 
to assess the quality and prediction reliability of  the developed pharmacophore model. The 
generated model showed potential in good prediction of  activity as indicated by the squared 
predictive correlation coefficient of  0.841 observed between experimental and predicted 
activity values of  test set molecules. Thus, based on the results, it can be contemplated that the 
constructed hypothesis in this study seems to be a useful and reliable tool that can be used in 
identifying p56lck inhibitors with improved potency and efficacy.
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1. INTRODUCTION
A number of  protein tyrosine kinases 

(PTK) are activated as the earliest biochemical 
response in T-cell receptor (TCR) mediated 
signal transduction [1]. Tyrosine kinase enzyme 
is responsible for the transfer of  the γ-phosphate 
group of  either ATP or GTP to the specific 
tyrosine residues in protein substrates in a cell 
and hence, functions as a central “on” and “off ” 

switch in different cellular signal transduction 
pathways. They are considered as key mediators in 
the normal cellular signal transduction processes 
[2]. The sarcoma (src) family of  protein tyrosine 
kinase (PTK) genes is made up of  ten known 
members, c-src, c-yes, yrk, c-fgr, fyn, lyn, lck, 
hck, blk and rak [3]. A typical example of  non-
receptor PTK of  src-family is p56lck which is 
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expressed at high levels in T-lymphocytes and 
natural killer (NK) cells [4]. p56lck is made up 
of  a single polypeptide chain containing 509 
amino acids. It plays pivotal roles in thymocyte 
development and transducing apoptotic signals 
in T-cells, initiation and regulation of  T-cells 
antigen receptor (TCR) signaling, activation-
induced intracellular Ca2+ mobilization, and 
up regulation of  cytokine such as production 
of  interleukin-2 (IL-2) [5,6]. The T-cells that 
lack lck are shown to be severely impaired in 
TCR tyrosine phosphorylation and activation 
[7]. Its typical role has also been shown for 
FasL expression during activation-induced 
T-cell apoptosis [8]. So, the selective inhibitors 
seems to be a viable option for treatment 
of  both acute and chronic T-cell mediated 
inflammatory and autoimmune disorders 
like- rheumatoid arthritis, multiple sclerosis 
and delayed hypersensitivity and may have 
extensive therapeutic utilization in prevention of  
solid organ transplant rejection [9]. Although, 
chemicals such as, anthraquinone derivatives 
(e.g. damnacanthal, nordamnacanthal) have 
proven to be efficacious in p56lck inhibition, but 
unfortunately, their use is associated with some 
undesirable adverse effects [10,11]. In order to 
improve the efficacy, to minimize or abolish the 
adverse effects of  existing therapeutic agents 
and/or to develop drugs of  choice, there is a 
need to search for new, selective and potent 
p56lck inhibitors for further drug development.

 Pharmacophore modeling is a computational 
method for the drug design which takes in to 
account the essential structural features of  
biologically active ligands and their interaction 
with the target protein receptors. In brief, 
this approach is based on the correlation of  
spatial arrangements of  various chemical 
functionalities with the biological activities [12]. 
For this purpose, the structural features seem 
to be important for the biological activity of  
ligand(s) as well as for binding interaction with 
the receptors are identified and arranged in 3D 

space [13, 14]. The pharmacophore modeling 
is a reliable and well established technique in 
pharmaceutical industries to quantitatively 
delve into common chemical features among 
a large data base of  structures. A successful 
pharmacophore model could also be used as 
an important tool to search chemical databases 
in order to find new chemical entities (NCE). 
3D quantitative structure activity relationships 
(3D QSAR) and pharmacophore modeling 
are the versatile and commonly used tools in 
ligand based drug design (LBDD). They can 
provide predictive models suitable for lead 
identification and optimization [15]. These in 
silico techniques can be used in drug discovery 
in several ways, e.g. to rationalize the activity 
trends in molecules under study, to predict 
the activity of  new compounds, to conduct 
database search in hope of  finding new hits 
and to identify essential chemical features for 
activity [16-19]. 

Benzothiazole is a versatile heterocyclic 
moiety representing a core structural feature 
of  numerous synthetic and natural marine 
as well as plant products. It is an example 
of  bicyclic ring system in which benzene is 
fused with a biologically active five membered 
thiazole ring [20]. The comprehensive literature 
review indicates that benzothiazole nucleus 
and its derivative possess a wide range of  
useful pharmacological activities including 
anti-inflammatory, anticonvulsant, antitumor, 
antidiabetic, anthelmintic, antimicrobial and 
antimalarial etc [21]. Because of  the high degree 
of  structural diversity offered by benzothiazole 
analogs, this nucleus attracted the attention of  
medicinal chemists and over the last decade 
this ring system has been explored for its p56lck 
inhibitory activity in an attempt to develop 
potent therapeutic agents[22]. Badiger et al., 
in 2006 developed a QSAR model based on 
the structure of  45 analogs of  benzothiazole 
in order to predict the essential structural 
features of  benzothiazole derivatives that 



	 Chiang Mai J. Sci. 2018; 45(2)1064

could exhibit potent p56lck inhibitory activity 
[23]. The prediction results of  their QSAR 
model were in agreement with the experimental 
results previously obtained by Das et al., [24]. In 
another study, Mohmed et al., built a 3D QSAR 
model based on comparative molecular field 
analysis (CoMFA) and comparative molecular 
similarity indices analysis (CoMSIA) to identify 
potent p56lck inhibitors having a benzothiazole 
ring system [25]. They also validated the 
predictive ability of  the models to have better 
understanding of  the relationship between 
the structural features of  benzothiazole p56lck 
inhibitors and its activities. 

In this article, we have discussed the 
development of  a suitable, robust and reliable 
ligand-based 3D-pharmacophore hypothesis 
using pharmacophore alignment and scoring 
engine PHASE for benzothiazole derivatives as 
potent p56lck inhibitors. The alignment acquired 
from the pharmacophoric points is employed 
to develop a pharmacophore based 3D-QSAR 
model that can provide a rational hypothetical 
picture of  primary chemical functionalities 
responsible for biological activity [19].

2. MATERIALS AND METHODS
2.1 Data Set

The in- vitro biological data of  a library 
of  64 compounds with the p56lck inhibitory 
activity was used in the current study [24]. 
IC50 value i.e. the effective concentration of  a 
compound (µM) that inhibits 50% of  enzyme 
activity is used to express the p56lck inhibitory 
activity. The dataset was divided randomly 
into two sets namely training and test set by 
keeping the 75% of  the total compounds in the 
training set and remaining 25% in the test set. 
Forty eight structures in the training set were 
used for generation of  pharmacophore models 
and to predict the activity of  16 compounds 
in test set. The developed models were also 
validated by using the same set. The basic 
chemical structures of  selected molecules and 

their various substituents are shown in Figure 1 
and Table 1, respectively.

2.2 Pharmacophore Modeling
	 Pharmacophore modeling and 3-D database 
searching are two important components 
of  lead discovery and lead optimization. A 
‘PHASE’ program was developed to meet the 
continuing demand in industries for the improved 
pharmacophore based tools in drug design 
and discovery [26]. In the present study, we 
have used ‘PHASE’ a module of  Schrödinger’s 
software program ‘MAESTRO’ to develop a 
reliable pharmacophoric model for identifying 
potential therapeutic p56lck inhibitors [27].

2.3 Ligand Preparation
	 Ligand preparation is the first step in any 
pharmacophore modeling studies. Maestro was 
used to draw the chemical structures of  all the 
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Figure 1. Basic structures of  2-amino-heteroaryl 
benzothiazole-6-anilides series.
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Table 1. Different substituents attached to basic structures of  2-amino-heteroaryl benzothiazole-
6-anilides.

Sr. 
No. Set R R1 Series Sr. 

No. Set R R1 Series

1. A 2,4,6-Me3 H Training 33. B 2-Cl,6-Me 6-Me2NCH2 Training

2. A 2,4,6-Me3 Ph Training 34. B 2-Cl,6-Me 6-H2NCMe2-CH2NH Training

3. A 2,4,6-Me3 Cyclopropyl-CH2 Training 35. B 2,4,6-Me3 3-Me Test

4. A 2,4,6-Me3 2-Thiazolyl Training 36. B 2,4,6-Me3 5-Me Test

5. A 2,4,6-Me3 2-Imidazolyl Training 37. B 2-Cl, 6-Me 4-Me Test

6. A 2,4,6-Me3 4-Imidazolyl Training 38. B 2-Cl, 6-Me 6-Me Test

7. A 2,4,6-Me3 5-(1,2,4-Triazolyl) Training 39. B 2-Cl, 6-Me 4-NMe-Piperazino CH2 Test

8. A 2,4,6-Me3 2-Pyridyl Training 40. B 2-Cl, 6-Me 6-Morpholino CH2 Test

9. A 2,4,6-Me3 3-Pyridyl Training 41. B 2-Cl, 6-Me 6-HO-CH2CH2NH Test

10. A 2,4,6-Me3 4-Pyridyl Training 42. B 2-Cl, 6-Me 6-AcNH-CH2CH2NH Test

11. A 2,4,6-Me3 2-Pyrimidinyl Training 43. C 2,4,6-Me3 6-Et Training

12. A 2,4,6-Me3 2-Pyrazinyl Training 44. C 2-Cl,6-Me 2-Cl Training

13. A 2-Cl,6-Me 2-Imidazolyl Training 45. C 2-Cl,6-Me 2-MeNH Training

14. A 2-Cl,6-Me 3-Pyrazolyl Training 46. C 2-Cl,6-Me 2-HO-CH2CH2NH Training

15. A 2-Cl,6-Me 2-Pyridyl Training 47. C 2-Cl,6-Me 6-Me Training

16. A 2-Cl,6-Me 4-Pyrimidinyl Training 48. C 2-Cl,6-Me 6-Cl Training

17. A 2-Cl,6-Me 2-Pyridazinyl Training 49. C 2-Cl,6-Me 6-OMe Training

18. A 2-Cl,6-Me 3-Pyrazinyl Training 50. C 2-Cl,6-Me 6-NH2 Training

19. A 2,4,6-Me3 4-Pyrimidinyl Test 51. C 2-Cl,6-Me 6-MeNH Training

20. A 2,4,6-Me3 3-(1,2,4-Triazinyl) Test 52. C 2-Cl,6-Me 6-AcNH-CH2CH2NH Training

21. A 2-Cl, 6-Me Ph Test 53. C 2-Cl,6-Me 2,6-di-Me Training

22. B 2,4,6-Me3 4-Me Training 54. C 2-Cl,6-Me 2-Me, 6-MeNHCH2 Training

23. B 2,4,6-Me3 6-Me Training 55. C 2-Cl,6-Me 2-Me, 6-MeNHCH2 Training

24. B 2,4,6-Me3 3,5-di-Me Training 56. C 2-Cl,6-Me 2-HOCH2 -CH2NH, 
6-Me Training

25. B 2-Cl,6-Me H Training 57. C 2-Cl,6-Me 2-HOCMe2 -CH2NH, 
6-Me Training

26. B 2-Cl,6-Me 5-Me Training 58. C 2-Cl,6-Me 2-(2-tetrahyd- 
rofurylCH2 -NH), 6-Me Training

27. B 2-Cl,6-Me 4,6-di-Me Training 59. C 2-Cl,6-Me 2-Morpholino CH2, 
6-Me Training

28. B 2-Cl,6-Me 4-Et Training 60. C 2,4,6-Me3 2,6-di-Me Test

29. B 2-Cl,6-Me 4-NH2 Training 61. C 2-Cl, 6-Me H Test

30. B 2-Cl,6-Me 4-Me2NCH2 Training 62. C 2-Cl, 6-Me 6-Et Test

31. B 2-Cl,6-Me 4-Morpholino 
CH2

Training 63. C 2-Cl, 6-Me 6-HOCH2 -CH2NH Test

32. B 2-Cl,6-Me 6-NH2 Training 64. C 2-Cl, 6-Me 2-Me, 6-Morp -holino 
CH2

Test



	 Chiang Mai J. Sci. 2018; 45(2)1066

compounds which were then geometrically 
refined by using LigPrep module. LigPrep is 
a combination of  very powerful tools that are 
widely used to generate high quality, all-atom 
3D structures for large numbers of  drug-like 
molecules presented as 2D or 3D structures 
in SDF or Maestro format. The simplest use 
of  LigPrep results in output of  a single, low 
energy minimized 3D structure with correct 
chiralities for each successfully processed input 
structure. 

In this step, 3D structure was used to 
determine chirality by retaining original states 
of  ionization. A MacroModel method was 
used to generate tautomers after discarding 
current conformers. The conformations were 
obtained by the Monte Carlo (MCMM) method 
as implemented in MacroModel version 9.6 
using a maximum of  2,000 steps with a distance-
dependent dielectric solvent model and an 
OPLS-2005 force field. A truncated Newton 
conjugate gradient (TNCG) minimization up 
to 500 iterations was employed to minimize the 
energy of  all conformers. For each compound, 
a set of  conformers with a maximum energy 
difference of  30kcal/mol as compared to 
the global energy minimum conformer were 
retained. The generalized born/solvent accessible 
surface (GB/SA) continuum solvation model 
was used for conformational searches for 
aqueous solution [28].

2.4 Creation of  Pharmacophoric Sites
	 The second step in building a pharmacophore 
model is to use an array of  pharmacophore 
features to create pharmacophore site points 
for all the ligands. An initial analysis of  the 
selected benzothiazole compounds for essential 
chemical features indicated that there are four 
descriptors of  chemical features i.e., hydrogen-
bond acceptor (A), hydrogen bond donor 
(D), aromatic ring (R) and hydrophobic site 
(H) which could effectively map all important 
chemical features of  all molecules in the data 

set. The minimum and maximum sites for 
all the chemical features were set at 6 and 6, 
respectively. These selected chemical features 
were used to develop and generate a series of  
hypotheses using a find common pharmacophore 
command option in PHASE.

2.5 Search of  a Common Pharmacophore
	 This step involves grouping of  pharmacophore 
based on common chemical features and similar 
spatial arrangements in the training set. After 
examination of  all conformations of  the ligand 
molecules in the training set, pharmacophores 
that were having similar sets of  chemical features 
with almost alike spatial arrangements, were 
grouped together. If  a particular group is found 
to have at least one pharmacophore from each 
ligand, then this group results in a common 
pharmacophore. Any single pharmacophore 
in the group could finally become a common 
pharmacophore hypothesis. For the identification 
of  common pharmacophores a tree-based 
partitioning technique was used that groups 
together similar pharmacophores as per their 
inter site distances, i.e. the distances between 
pairs of  sites in the pharmacophore. 

2.6 Scoring Hypothesis
	 The common pharmacophore hypothesis 
built in previous steps was assessed by employing 
a scoring function to get the best alignment of  
the active ligands keeping an overall maximum 
root mean square deviation (RMSD) value of  
1.2 Å for distance tolerance. Survival score was 
used to measure the quality of  alignment [29].

2.7 Generation of  3D-QSAR Model
	 PHASE helps in building 3D QSAR 
models for a group of  ligands that are aligned 
to a selected hypothesis. The PHASE 3D 
QSAR model divides the space occupied by the 
ligands into a cubic grid shape. Any structural 
component can occupy part of  one or more 
cubes. A cube is considered occupied by a 
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feature if  its centroid is within the radius of  the 
feature. The size of  the cubes can be adjusted 
and set manually by changing the value in the 
grid spacing text box. A series of  models with 
an increasing number of  Partial least squares 
(PLS) factors were constructed and regression 
analysis was done. In the present study, the 
pharmacophore based model was produced 
having 1Å grid space value while maximum 
number of  PLS factors were set to 3. 

2.8 Validation of  Pharmacophore Model
	 Validation is a pivotal part of  pharmacophore 
design, especially when the intention of  building 
a model is to predict activities of  compounds 
in external test series [30]. External validation 
is seen as a definite proof  for assessing quality 
and prediction reliability of  a model. Our aim 
was to develop robust QSAR models that are 
statistically reliable and accurate in both internal 
and external validation for predicting the biological 
activities of  new molecules. In this study, we 
validated the developed pharmacophore model 
by predicting the activity of  test set molecules 
and by determining the correlation between 
the experimental and predicted activities of  
the test set molecules.

3. RESULTS AND DISCUSSION
	 The motive of  pharmacophore modeling 
is to perform in silico screening searches in a 
3 dimensional database of  a virtual or real 
compound library in order to find diverse 
structures with desired binding activity and 
selectivity [31]. We selected a series of  2-amino-
heteroaryl benzothiazole-6-anilides for virtual 
molecular modeling studies. The study aimed 
to develop a ligand based pharmacophore 
model based on the p56lck inhibitory activity of  
2-amino-heteroaryl benzothiazole-6-anilides to 
gain useful information and better insight of  
ligand – lymphocyte-specific protein tyrosine 
kinase inhibitor interaction.

 Forty eight molecules comprising the training 
set were used to develop the pharmacophores. 
The pharmacophoric features chosen for 
creating sites were hydrogen bond acceptor 
(A), hydrogen bond donor (D), aromatic rings 
(R) and hydrophobic site (H). Pharmacophore 
models containing four, five, six and seven 
sites, i.e., chemical structural features were 
created. Because of  low value of  survival 
score, the pharmacophore hypotheses based 
on four and five features were rejected, as they 
were unable to define the complete binding 
space of  the selected chemical compounds. 
Similarly, pharmacophore hypothesis developed 
using seven core features was also rejected as 
no common pharmacophore was found. Six 
featured pharmacophore hypothesis, the most 
suitable hypothesis was picked and subjected 
to severe scoring function analysis. 

The results of  six featured pharmacophore 
hypothesis, labeled AADHRR.15 is presented in 
Table 2. The first hypothesis of  AADHRR.15 
was found to be the best hypothesis in this study. 
It showed the highest survival score (3.203) 
and the best regression coefficient (r2=0.854). 
The AADHRR.15 pharmacophore hypothesis 
is illustrated in Figure 2. The chemical features 
of  this hypothesis include two hydrogen bond 
acceptors (A), one hydrogen bond donor (D), 
one hydrophobic site (H) and two aromatic 
rings (R). 

For each ligand, one aligned conformer based 
on the lowest RMSE of  feature atom coordinates 
from those of  the corresponding reference 

Table 2. Parameters of  six featured pharmacophore 
hypothesis.

S. No. Hypothesis Survival 
Score R2 F

1. AADHRR.15 3.203 0.854 66.5
2. AADHRR.16 3.184 0.798 77.7
3. AADHRR.13 2.966 0.7868 72.6
4. AADHRR.3 2.845 0.7605 62.5
5. AADHRR.14 2.333 0.8028 80.1
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Figure 2. PHASE generated pharmacophore model AADHRR.15 showing hydrogen bond 
acceptor (A2, A3; pink), hydrogen bond donor (D4; blue), hydrophobic group (H7; green) 
and aromatic ring (R11, R12; orange) features. 
  

 

Figure 3. Best pharmacophore model AADHRR.15 aligned with molecule 23. 
Pharmacophore features are color coded: hydrogen bond acceptor (A2, A3: pink), hydrogen 
bond donor (D4, blue), hydrophobic group (H7, green) and aromatic ring (R11, R12, orange). 
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to all training set molecules. Afterwards, the 
AADHRR.15 model was used to predict the 
activities of  test set molecule and the results 
were compared with the actual activity. Actual 
and predicted activity values of  test set molecules 
are given in Table 4. The predicted p56lck 
inhibitory activity of  test molecule showed 
a correlation of  0.841 with reported p56lck 
inhibitory activity using model AADHRR.15 
(Figure 5). For a reliable model, the squared 
predictive correlation coefficient should be 
>0.6 [32,33]. The results of  this study support 
that the developed model AADHRR.15 can 
be used for the successful prediction of  p56lck 
inhibitory activity of  chemical compounds.

3-D QSAR of  compound 23 of  the 
training set model illustrates the hydrogen 
bond acceptor feature in Figure 6. The red 
region at pharmacophoric region highlights the 
importance of  hydrogen acceptor group here; 
if  this position is occupied by any hydrogen 
bond acceptor then it will result in significant 
increase in activity. Similarly, green region 
indicates that presence of  any hydrogen bond 
acceptor in this region is not favorable for the 
activity.

The 3-D QSAR model based on hydrogen 
bond donor feature is shown in Figure 7. The 
green region at the site of  pharmacophore 
(A2) shows that if  any hydrogen bond donor 
occupies this position, it would result in decrease 
in p56lck inhibitory activity. Similarly, red and 
green regions in Figure 8 specify the positions 
where hydrophobic groups will increase and 
decrease p56lck inhibitory activity, respectively. 

Several QSAR models based on hydrophobic 
parameters, hydration energy [2], partial charge, 
subdivided surface area, van der walls volume, 
Wiener path number (2D descriptors), internal 
3D predictor parameters such as total energy, 
electronic energy, water accessible surface area, 
van der walls surface area and volume [23], 
k-Nearest Neighbor Molecular Field Analysis 
(kNN-MFA) [34], comparative molecular field 

feature was superimposed on AADHRR.15. The 
fitness scores for all ligands were determined 
against the best scored pharmacophore model 
AADHRR.15. The higher is the fitness score, 
the greater would be the activity prediction 
of  the compound. The fit function does not 
only check if  the feature is mapped or not, it 
also contains a distance term, which measures 
the distance that separates the feature on the 
molecule from the centroid of  the hypothesis 
feature. Table-3 shows the fitness score for all 
the molecules of  training set. 

In addition to the survival score analysis, 
the quality of  AADHRR.15 was characterized 
by another validation method which is based 
on its capacity for correct activity prediction of  
training set molecules. The actual and estimated 
p56lck antagonistic activity of  48 molecules of  
the training set based on the pharmacophore 
hypothesis AADHRR.15 are given in Table-3. 
The predicted p56lck antagonistic activity 
of  training set molecule gave a regression 
correlation coefficient of  0.854 with already 
reported p56lck antagonistic activity using model 
AADHRR.15 (Figure 4).

The validity and predictability of  
AADHRR.15 were further examined by using 
the test set prediction. The test set comprising 
of  sixteen molecules was analyzed. All the test 
set molecules were built, energy minimized 
and used in conformational analysis similar 
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Table 3. Experimental and predicted pKi values of  training set molecules based on hypothesis 
AADHRR.15.

Comp.
No.

Experimental 
pKi

Predicted 
pKi

Fitness
Score

Comp.
No.

Experimental 
pKi

Predicted 
pKi

Fitness
Score

1. 4.82 5.44 2.76 28. 8.30 7.60 1.40
2. 5.76 5.80 2.88 29. 6.40 6.68 1.40
3. 5.51 6.14 2.23 30. 8.05 7.77 1.38
4. 5.51 5.63 1.47 31. 9.00 9.18 2.05
5. 5.51 5.77 2.92 32. 8.70 8.04 2.86
6. 5.51 6.08 1.48 33. 8.00 7.90 2.78
7. 5.51 5.51 2.91 34. 8.22 8.10 2.70
8. 6.86 6.51 1.47 43. 7.11 7.03 1.45
9. 5.51 5.48 2.89 44. 7.51 7.61 2.87
10. 5.51 5.53 2.90 45. 7.70 7.93 2.85
11. 5.51 5.63 1.46 46. 8.52 8.67 2.75
12. 6.63 6.31 2.95 47. 7.68 7.58 1.40
13. 5.51 6.60 1.42 48. 7.70 7.74 1.40
14. 5.80 6.52 2.80 49. 7.89 7.82 1.39
15. 7.08 7.20 1.41 50. 8.10 7.55 1.40
16. 7.57 7.50 1.41 51. 8.70 7.90 1.40
17. 7.39 6.85 1.41 52. 8.22 8.24 2.63
18. 7.82 7.23 1.41 53. 7.70 7.77 1.40
22. 7.50 7.17 2.92 54. 8.16 8.01 2.78
23. 6.75 6.68 3.00 55. 8.16 8.01 2.78
24. 7.77 7.11 2.89 56. 8.70 8.87 2.72
25. 7.06 7.20 1.41 57. 8.22 8.27 2.67
26. 7.46 7.22 2.79 58. 9.00 9.04 2.05
27. 8.10 7.91 2.84 59. 8.00 8.19 2.06

Table 4. Experimental and predicted pKi values of  test set molecules based on hypothesis 
AADHRR.15.

Comp.
No.

Experimental 
pKi

Predicted 
pKi

Fitness
Score

Comp.
No.

Experimental 
pKi

Predicted 
pKi

Fitness
Score

19. 6.40 6.38 1.46 40. 7.89 7.87 2.04

20. 5.72 5.58 1.47 41. 9.30 8.52 2.77

21. 6.49 6.65 1.41 42. 8.70 7.43 2.49

35. 5.51 6.42 2.92 60. 7.28 7.30 2.96

36. 7.14 7.10 2.92 61. 7.57 7.50 1.41

37. 7.70 7.45 1.41 62. 8.30 7.89 1.41

38. 8.05 8.00 2.87 63. 8.10 8.04 2.71

39. 9.00 8.54 2.06 64. 8.22 8.47 2.05



	 Chiang Mai J. Sci. 2018; 45(2)1070

analysis (CoMFA) and comparative molecular 
similarity indices analysis (CoMSIA) [25] and 
receptor surface analysis (RSA) models [35] 
have been developed in the past to identify 
the compounds with potential p56lck inhibitory 
activities. All these proposed models employed 
different number of  molecules which were 
subdivided into two sets of  training and test 
molecules. Our proposed model showed either 
comparable or better regression coefficient (r2= 
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and aromatic ring (R11, R12; orange) features. 
  

 

Figure 3. Best pharmacophore model AADHRR.15 aligned with molecule 23. 
Pharmacophore features are color coded: hydrogen bond acceptor (A2, A3: pink), hydrogen 
bond donor (D4, blue), hydrophobic group (H7, green) and aromatic ring (R11, R12, orange). 
 

Figure 3. Best pharmacophore model AADHRR.15 
aligned with molecule 23. Pharmacophore features 
are color coded: hydrogen bond acceptor (A2, 
A3: pink), hydrogen bond donor (D4, blue), 
hydrophobic group (H7, green) and aromatic 
ring (R11, R12, orange).
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Figure 4. Relation between experimental and predicted p56lck antagonistic activity values 
of training set molecules using model AADHRR.15.      

 
    

 

Figure 5. Relation between experimental and predicted p56lck inhibitory activity values of 
test set molecules using model AADHRR.15. 
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Figure 4. Relation between experimental and 
predicted p56lck antagonistic activity values of  
training set molecules using model AADHRR.15.
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Figure 5. Relation between experimental and 
predicted p56lck inhibitory activity values of  
test set molecules using model AADHRR.15.
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Figure 6. 3-D QSAR model based on compound 23 of the training set illustrating hydrogen 
bond acceptor feature 
 

 

 

Figure 7. 3-D QSAR model based on compound 23 of the training set illustrating hydrogen 
bond donor  feature 
 

Figure 6. 3-D QSAR model based on compound 
23 of  the training set illustrating hydrogen bond 
acceptor feature.
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Figure 6. 3-D QSAR model based on compound 23 of the training set illustrating hydrogen 
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Figure 7. 3-D QSAR model based on compound 23 of the training set illustrating hydrogen 
bond donor  feature 
 

Figure 7. 3-D QSAR model based on compound 
23 of  the training set illustrating hydrogen 
bond donor feature.
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Figure 8. 3-D QSAR model based on compound 23 of the training set illustrating 
hydrophobicity feature 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1. Different substituents attached to basic structures of 2-amino-heteroaryl 
benzothiazole-6-anilides 

Sr. 
No. 

Set R R1 Series Sr. 
No. 

Set R R1 Series 

1. A 2,4,6-Me3 H Training 33. B 2-Cl,6-Me 6-Me2NCH2 Training 
2. A 2,4,6-Me3 Ph Training 34. B 2-Cl,6-Me 6-H2NCMe2-

CH2NH 
Training 

3. A 2,4,6-Me3 Cyclopropyl-
CH2 

Training 35. B 2,4,6-Me3 3-Me Test 

4. A 2,4,6-Me3 2-Thiazolyl Training 36. B 2,4,6-Me3 5-Me Test 
5. A 2,4,6-Me3 2-Imidazolyl Training 37. B 2-Cl, 6-Me 4-Me Test 
6. A 2,4,6-Me3 4-Imidazolyl Training 38. B 2-Cl, 6-Me 6-Me Test 
7. A 2,4,6-Me3 5-(1,2,4-

Triazolyl) 
Training 39. B 2-Cl, 6-Me 4-NMe-

Piperazino CH2 
Test 

8. A 2,4,6-Me3 2-Pyridyl Training 40. B 2-Cl, 6-Me 6-Morpholino 
CH2 

Test 

9. A 2,4,6-Me3 3-Pyridyl Training 41. B 2-Cl, 6-Me 6-HO-
CH2CH2NH 

Test 

10. A 2,4,6-Me3 4-Pyridyl Training 42. B 2-Cl, 6-Me 6-AcNH-
CH2CH2NH 

Test 

11. A 2,4,6-Me3 2-Pyrimidinyl Training 43. C 2,4,6-Me3 6-Et Training 
12. A 2,4,6-Me3 2-Pyrazinyl Training 44. C 2-Cl,6-Me 2-Cl Training 

Figure 8. 3-D QSAR model based on compound 
23 of  the training set illustrating hydrophobicity 
feature.
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0.8459 and 0.8417, respectively) between the 
experimental and predicted p56lck antagonistic 
activity values of  training set and test set 
molecules in comparison to earlier published 
data. The r 2 value of  0.8506 in kNN-MFA 
based model showed good internal and external 
predictivity for the 29 molecules in training set 
and 4 molecules in test set and was found to be 
slightly better than our proposed model [34]. 
However, the present study is more reliable 
than the 3D QSAR model of  Bodiger et al., 
who obtained the r2 values of  0.723 and 0.765 
calculated from the plot of  experimental and 
predicted IC50 values for 35 training set molecules 
and 10 molecules in test set respectively [23]. 
Bharatham et al., in 2006 developed a MFA 
QSAR model with r2 value of  0.83 for training 
set molecules which upon cross-validation with 
15 molecules test set had a r2 value of  0.764. 
Another model based on RSA gave r2 value of  
0.796 and specified the regions where variations 
in the structural features (steric or electrostatic), 
of  different compounds in the training set, 
lead to increased or decreased activities [35]. 

4. CONCLUSIONS
	 The study developed a pharmacophore 
model AADHRR.15 for 2-amino-heteroaryl 
benzothiazole-6-anilides which can act as potent 
p56lck inhibitors. AADHRR.15, a six point 
pharmacophore, consists of  two hydrogen bond 
acceptor (A), one hydrogen bond donor (D), 
one hydrophobic group (H) and two aromatic 
ring features (R). This pharmacophore model 
was able to predict p56lck inhibitory activity 
of  the tested compounds and the validation 
results also provide additional confidence in 
the proposed pharmacophore model. Thus, 
based on the results, it can be contemplated 
that the proposed 3D-QSAR model in this 
study seems to be a useful and reliable tool for 
rational design of  p56lck inhibitors based on 
2-amino-heteroaryl benzothiazole-6-anilide. This 
model can also be of  great help in screening 

and identification of  new promising molecules 
as p56lck inhibitors from the large 3D database 
of  molecules.
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