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ABSTRACT 
  In this paper, a modification of  the original global radial basis functions-based 
differential quadrature (RBF-DQ) method is set forth and analyzed. The improved RBF-DQ 
method is applicable to the numerical approximation of  solutions of  a wide range of  partial 
differential equations (PDEs) with mixed derivative terms. However, it appears to be considerably 
faster than the original method. In support of  this contention, the multidimensional Black-
Scholes (BS) equation in the Geometric Brownian Motion (GBM) framework has been 
solved numerically by using the proposed method and compared with results obtained 
via the original RBF-DQ method. For accuracy achieved versus work expended, the 
improved method performs better. 
 
Keywords: radial basis functions, multi-dimensional Black-Scholes equation, differential 
quadrature, european option 
 
 
1. INTRODUCTION 
 The original differential quadrature (DQ) method for the numerical approximation of  
PDEs was developed by Bellman et al. in [1, 2]. The basic idea of  the DQ method is that any 
derivative at a mesh point, can be approximated by a weighted linear sum of  the function 
values along a mesh line. The key step in the DQ method is determination of  weighting 
coefficients to determine a discrete approximation of  any order derivative. As has been shown 
in [3], RBFs which are mesh-free and insensitive to dimension present a good choice for use 
in the DQ approximation. Exploiting the advantages of  RBFs, Shu et al. proposed an 
alternative set of  mesh-less methods which they termed RBF-DQ methods. In their scheme, 
the RBFs are taken as the test functions in the DQ approximation to compute the weighting 
coefficients. The method not only inherits the high accuracy and efficient computation of  the 
DQ method, but also possesses desirable features of  RBFs such as being mesh-free and easily 
extensible to higher dimensions. In this study we improve the RBF-DQ method. The improved 
RBF-DQ method can be used to approximate the solutions of  a wide range of  PDEs with 
mixed derivative terms. Moreover, the improved method is much faster than the original one 
as we will presently indicate by example. 
 Options are an important and widely used class of  financial derivatives. A major concern 
in financial markets is determining the value of  an option. An option contract is an agreement 
between a buying party (the holder) and a selling party (the underwriter). The holder of  the 
option contract has no obligation to exercise his option contract, but if  the holder chooses to 
do so, the underwriter is obliged to execute the contract. Here, we will be particularly 
concerned with options where the payoff  depends on multiple underlying assets. The pricing 
of  such option can be modeled by a higher dimensional generalization of  the original equation 
proposed by Black and Scholes [4], as extended by Merton [5], for evaluating European call 
options without dividends [4]. 
 By assuming that the asset price is risk-neutral, Black and Scholes showed that the 
value of  a single asset European call option satisfies a lognormal diffusion type PDE, 
now commonly referred to as the BS equation. If  we let  ,V t s  represent the option 
value at time t with stock prices  𝑆𝑆 = (𝑠𝑠1, 𝑠𝑠2, ⋯ , 𝑠𝑠𝑑𝑑), then we get the following linear parabolic 
PDE 
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which is known as the BS equation for multi-asset option problems. Respectively 𝑠𝑠𝑖𝑖 , 𝜎𝜎𝑖𝑖, 𝜌𝜌𝑖𝑖𝑖𝑖 and 
 𝑟𝑟 are,  𝑖𝑖-th asset price, volatility of  the  𝑖𝑖-th asset price, correlation between the prices of   𝑖𝑖-th 
and  𝑗𝑗-th assets, and the risk free interest rate. It is very hard to get an analytic form solution 
for most financial derivatives due to the complexity of  the financial product itself  and the 
complexity of  the financial market; however, various numerical techniques can be applied to 
price multi-variate derivatives. Numerical methods using higher-dimensional generalizations 
of  lattice binomial methods can be used cf. [6], for European options based on three 
underlying assets. Stable higher-order methods for the BS equation have been introduced by 
Voss et al. [7] and Khaliq et al. [8]. Moreover, mesh-free methods based on RBFs may also 
reduce computational cost significantly, [9]. Jo and Kim in [10] combined the operator splitting 
method with a parallel computation technique for solving the multi-dimensional BS equations. 
Nielsen applied penalty methods for the numerical solution of  American multi-asset option 
problems [11]. Martin in 2014 stabilized proposed explicit Runge-Kutta methods for multi-
asset American options [12]. 
 The organization of  this paper is as follows: In Section 2, the improved RBF-DQ method 
for approximation of  partial derivatives is described. Section 3 is devoted to adapting this 
method to approximate multi-dimensional option pricing. In Section 4 we discuss the stability 
of  the method in the context of  the multi-asset option pricing problems, while Section 5 
provides telling numerical examples comparing the performance of  the new method with the 
original RBF-DQ method. The paper concludes in Section 6 with a brief  retrospective. 
 
2. RBF-BASED DQ METHOD 
 In this section, we will show the RBF-DQ method and the recommended modification 
to it in detail. 
 
2.1 Radial Basis Functions 
 Interpolation theory of RBFs has been the subject of intensive research in recent decades 
and nowadays RBFs play an increasingly important role in the field of reconstructing functions 
from multivariate scattered data. In general terms, the interpolation theory of RBFs can be 
described as follows: If an unknown function  𝑓𝑓(𝑋𝑋) is only known at a finite set of centres 
𝑋𝑋𝑖𝑖, 𝑖𝑖 = 1, ⋯ , 𝑁𝑁, then 𝑓𝑓 can be approximated as a linear combination of 𝑁𝑁, RBFs 

𝑓𝑓(𝑋𝑋) ≅ ∑ 𝜆𝜆𝑗𝑗𝜑𝜑(𝑋𝑋, 𝑋𝑋𝑗𝑗)
𝑁𝑁

𝑗𝑗=1
+ 𝑷𝑷(𝑋𝑋), 𝑋𝑋 ∈ 𝛺𝛺 ⊂ ℝ𝑑𝑑,                                             (2) 

where 𝑁𝑁 is the number of data points, 𝑋𝑋 = (𝑥𝑥1, 𝑥𝑥2, ⋯ , 𝑥𝑥𝑑𝑑),  𝑑𝑑 is the dimension of the problem, 
the  𝜆𝜆’s are coefficients to be determined and  𝜑𝜑 is the RBF. Eq. (2) may also be written without 
the polynomial term 𝑷𝑷. Among the tested RBFs, multi-quadrics (MQs) yield the most accurate 
results. MQ-RBFs can be written as 

𝜑𝜑(𝑋𝑋, 𝑋𝑋𝑗𝑗) = 𝜑𝜑(𝑟𝑟𝑗𝑗) = √𝑟𝑟𝑗𝑗2 + 𝑐𝑐𝑗𝑗2 ,                                                             (3) 

where 𝑟𝑟𝑗𝑗 = |𝑋𝑋 − 𝑋𝑋 𝑗𝑗| is the usual Euclidian distance and 𝑐𝑐𝑗𝑗 is a shape parameter. If we let 𝑷𝑷𝑞𝑞𝑑𝑑 
denote the space of  𝑑𝑑 -variate polynomials of order not exceeding  𝑞𝑞  and choose the 
polynomials 𝑃𝑃1, 𝑃𝑃2, ⋯ , 𝑃𝑃𝑚𝑚 a basis of 𝑷𝑷𝑞𝑞𝑑𝑑 in ℝ𝒅𝒅, then the polynomial  𝑷𝑷(𝑋𝑋) in Eq. (2), is usually 
written in the following form: 
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𝑑𝑑!(𝑞𝑞−1)!  . To determine the coefficients (𝜆𝜆1, 𝜆𝜆2,⋯ , 𝜆𝜆𝑁𝑁) and  (𝜉𝜉1, 𝜉𝜉2,⋯ , 𝜉𝜉𝑚𝑚), an extra  𝑚𝑚 

equations are required in addition to the  𝑁𝑁 equations resulting from collocating Eq. (2) at the 
 𝑁𝑁 points. This is ensured by the  𝑚𝑚 conditions for Eq. (2), 

∑𝜆𝜆𝑗𝑗𝑃𝑃𝑖𝑖(𝑋𝑋𝑗𝑗) = 0, 𝑖𝑖 = 1,⋯ ,𝑚𝑚.                                                              (5) 
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2.2 DQ Method for Partial Derivative Approximation in Higher Dimensions 
 In this section, we explain the method to approximate the spatial derivative in two-
dimensions. It is noted that the basic idea of the DQ method is that any derivative can be 
approximated by a linear weighted sum of the function values at some mesh points. We retain 
this idea but relax the condition of choosing function values along a mesh line. In other words, 
for a two-dimensional problem, any spatial derivative is approximated by a linear weighted 
sum the function values on the whole two-dimensional domain. In this approximation, a mesh 
point in the two-dimensional domain is represented by one index 𝑘𝑘, while in the conventional 
DQ approximation, the mesh point is represented by two indices 𝑖𝑖, 𝑗𝑗. If the mesh is structured, 
it is easy to establish the relationship between 𝑖𝑖, 𝑗𝑗, and 𝑘𝑘. For example 𝑘𝑘 can be written as 
𝑘𝑘 = (𝑖𝑖 − 1)𝑁𝑁2 + 𝑗𝑗, 𝑖𝑖 = 1,⋯ ,𝑁𝑁1;  𝑗𝑗 = 1,⋯ ,𝑁𝑁2 . As 𝑖𝑖 varies from 1 to 𝑁𝑁1 and  𝑗𝑗 varies from 1 to 𝑁𝑁2 , 𝑘𝑘 
varies over 1 to 𝑁𝑁 = 𝑁𝑁1 × 𝑁𝑁2. The DQ approximation for the 𝑛𝑛-th-order derivative with respect 
to 𝑥𝑥, and the 𝑚𝑚-th-order derivative with respect to 𝑦𝑦 at (𝑥𝑥𝑘𝑘, 𝑦𝑦𝑘𝑘) can then be written as 

𝜕𝜕𝑛𝑛𝑓𝑓
𝜕𝜕𝑥𝑥𝑛𝑛 (𝑥𝑥𝑘𝑘, 𝑦𝑦𝑘𝑘) = ∑𝑤𝑤𝑘𝑘,𝑧𝑧

(𝑛𝑛)𝑥𝑥 𝑓𝑓(𝑥𝑥𝑧𝑧, 𝑦𝑦𝑧𝑧)
𝑁𝑁

𝑧𝑧=1
,                                                         (6) 

𝜕𝜕𝑚𝑚𝑓𝑓
𝜕𝜕𝑦𝑦𝑚𝑚 (𝑥𝑥𝑘𝑘, 𝑦𝑦𝑘𝑘) = ∑𝑤𝑤𝑘𝑘,𝑧𝑧

(𝑚𝑚)𝑦𝑦 𝑓𝑓(𝑥𝑥𝑧𝑧, 𝑦𝑦𝑧𝑧)
𝑁𝑁

𝑧𝑧=1
.                                                       (7) 

Shu et al. employed this technique and made a novel and effective algorithm for the use of 
RBFs to solve the PDEs [3]. Instead of using polynomials for determining coefficients, they 
applied RBFs as test functions. In order to apply the original DQ method to approximate the 
PDE with mixed derivative terms, they should be removed by making some change of 
coordinates. However, we can improve the DQ method by using Eq. (6) and Eq. (7) so that 
we can easily approximate a PDE with mixed derivative terms as follows: 

𝜕𝜕𝑛𝑛+𝑚𝑚𝑓𝑓
𝜕𝜕𝑥𝑥𝑛𝑛𝜕𝜕𝑦𝑦𝑚𝑚 (𝑥𝑥𝑘𝑘, 𝑦𝑦𝑘𝑘) =

𝜕𝜕
𝜕𝜕𝜕𝜕 (

𝜕𝜕𝑛𝑛+𝑚𝑚−1𝑓𝑓
𝜕𝜕𝑥𝑥𝑛𝑛−1𝜕𝜕𝑦𝑦𝑚𝑚 (𝑥𝑥𝑘𝑘, 𝑦𝑦𝑘𝑘))                                                                                                 

=  ∑ 𝑤𝑤𝑘𝑘,𝑧𝑧1
(1)𝑥𝑥 𝜕𝜕𝑛𝑛+𝑚𝑚−1𝑓𝑓

𝜕𝜕𝑥𝑥𝑛𝑛−1𝜕𝜕𝑦𝑦𝑚𝑚 (𝑥𝑥𝑧𝑧1, 𝑦𝑦𝑧𝑧1)                                                    
𝑁𝑁

𝑧𝑧1=1
 

                                   ⋮ 
= ∑ 𝑤𝑤𝑘𝑘,𝑧𝑧1

(1)𝑥𝑥𝑤𝑤𝑧𝑧1,𝑧𝑧2
(1)𝑥𝑥 ⋯𝑤𝑤𝑧𝑧𝑛𝑛−1,𝑧𝑧𝑛𝑛

(1)𝑥𝑥⏟              
𝑛𝑛

𝑤𝑤𝑧𝑧𝑛𝑛,𝑧𝑧𝑛𝑛+1
(1)𝑦𝑦 ⋯𝑤𝑤𝑧𝑧𝑛𝑛+𝑚𝑚−1,𝑧𝑧𝑛𝑛+𝑚𝑚

(1)𝑦𝑦
⏟              

𝑚𝑚

𝑓𝑓(𝑥𝑥𝑧𝑧𝑛𝑛+𝑚𝑚, 𝑦𝑦𝑧𝑧𝑛𝑛+𝑚𝑚)
𝑁𝑁

𝑧𝑧1,⋯,𝑧𝑧𝑛𝑛+𝑚𝑚=1
.          (8) 

 
By rewriting the right hand side of Eq. (6) and Eq. (7) as 

∑ 𝑤𝑤𝑘𝑘,𝑧𝑧1
(1)𝑥𝑥𝑤𝑤𝑧𝑧1,𝑧𝑧2

(1)𝑥𝑥 ⋯𝑤𝑤𝑧𝑧𝑛𝑛−1,𝑧𝑧𝑛𝑛
(1)𝑥𝑥⏟              

𝑛𝑛

𝑓𝑓(𝑥𝑥𝑧𝑧𝑛𝑛, 𝑦𝑦𝑧𝑧𝑛𝑛)
𝑁𝑁

𝑧𝑧1,⋯,𝑧𝑧𝑛𝑛=1
, ∑ 𝑤𝑤𝑘𝑘,𝑧𝑧1

(1)𝑦𝑦𝑤𝑤𝑧𝑧1,𝑧𝑧2
(1)𝑦𝑦 ⋯𝑤𝑤𝑧𝑧𝑚𝑚−1,𝑧𝑧𝑚𝑚

(1)𝑦𝑦
⏟                

𝑚𝑚
𝑓𝑓(𝑥𝑥𝑧𝑧𝑚𝑚, 𝑦𝑦𝑧𝑧𝑚𝑚)

𝑁𝑁

𝑧𝑧1,⋯,𝑧𝑧𝑚𝑚=1
,   



	 Chiang Mai J. Sci. 2017; 44(4)1738

𝑷𝑷(𝑋𝑋) =∑𝜉𝜉𝑖𝑖𝑃𝑃𝑖𝑖(𝑋𝑋),                                                                         (4)
𝑚𝑚

𝑖𝑖=1
 

where = (𝑞𝑞−1+𝑑𝑑)!
𝑑𝑑!(𝑞𝑞−1)!  . To determine the coefficients (𝜆𝜆1, 𝜆𝜆2,⋯ , 𝜆𝜆𝑁𝑁) and  (𝜉𝜉1, 𝜉𝜉2,⋯ , 𝜉𝜉𝑚𝑚), an extra  𝑚𝑚 

equations are required in addition to the  𝑁𝑁 equations resulting from collocating Eq. (2) at the 
 𝑁𝑁 points. This is ensured by the  𝑚𝑚 conditions for Eq. (2), 

∑𝜆𝜆𝑗𝑗𝑃𝑃𝑖𝑖(𝑋𝑋𝑗𝑗) = 0, 𝑖𝑖 = 1,⋯ ,𝑚𝑚.                                                              (5) 
𝑁𝑁

𝑗𝑗=1
 

 
2.2 DQ Method for Partial Derivative Approximation in Higher Dimensions 
 In this section, we explain the method to approximate the spatial derivative in two-
dimensions. It is noted that the basic idea of the DQ method is that any derivative can be 
approximated by a linear weighted sum of the function values at some mesh points. We retain 
this idea but relax the condition of choosing function values along a mesh line. In other words, 
for a two-dimensional problem, any spatial derivative is approximated by a linear weighted 
sum the function values on the whole two-dimensional domain. In this approximation, a mesh 
point in the two-dimensional domain is represented by one index 𝑘𝑘, while in the conventional 
DQ approximation, the mesh point is represented by two indices 𝑖𝑖, 𝑗𝑗. If the mesh is structured, 
it is easy to establish the relationship between 𝑖𝑖, 𝑗𝑗, and 𝑘𝑘. For example 𝑘𝑘 can be written as 
𝑘𝑘 = (𝑖𝑖 − 1)𝑁𝑁2 + 𝑗𝑗, 𝑖𝑖 = 1,⋯ ,𝑁𝑁1;  𝑗𝑗 = 1,⋯ ,𝑁𝑁2 . As 𝑖𝑖 varies from 1 to 𝑁𝑁1 and  𝑗𝑗 varies from 1 to 𝑁𝑁2 , 𝑘𝑘 
varies over 1 to 𝑁𝑁 = 𝑁𝑁1 × 𝑁𝑁2. The DQ approximation for the 𝑛𝑛-th-order derivative with respect 
to 𝑥𝑥, and the 𝑚𝑚-th-order derivative with respect to 𝑦𝑦 at (𝑥𝑥𝑘𝑘, 𝑦𝑦𝑘𝑘) can then be written as 

𝜕𝜕𝑛𝑛𝑓𝑓
𝜕𝜕𝑥𝑥𝑛𝑛 (𝑥𝑥𝑘𝑘, 𝑦𝑦𝑘𝑘) = ∑𝑤𝑤𝑘𝑘,𝑧𝑧

(𝑛𝑛)𝑥𝑥 𝑓𝑓(𝑥𝑥𝑧𝑧, 𝑦𝑦𝑧𝑧)
𝑁𝑁

𝑧𝑧=1
,                                                         (6) 

𝜕𝜕𝑚𝑚𝑓𝑓
𝜕𝜕𝑦𝑦𝑚𝑚 (𝑥𝑥𝑘𝑘, 𝑦𝑦𝑘𝑘) = ∑𝑤𝑤𝑘𝑘,𝑧𝑧

(𝑚𝑚)𝑦𝑦 𝑓𝑓(𝑥𝑥𝑧𝑧, 𝑦𝑦𝑧𝑧)
𝑁𝑁

𝑧𝑧=1
.                                                       (7) 

Shu et al. employed this technique and made a novel and effective algorithm for the use of 
RBFs to solve the PDEs [3]. Instead of using polynomials for determining coefficients, they 
applied RBFs as test functions. In order to apply the original DQ method to approximate the 
PDE with mixed derivative terms, they should be removed by making some change of 
coordinates. However, we can improve the DQ method by using Eq. (6) and Eq. (7) so that 
we can easily approximate a PDE with mixed derivative terms as follows: 

𝜕𝜕𝑛𝑛+𝑚𝑚𝑓𝑓
𝜕𝜕𝑥𝑥𝑛𝑛𝜕𝜕𝑦𝑦𝑚𝑚 (𝑥𝑥𝑘𝑘, 𝑦𝑦𝑘𝑘) =

𝜕𝜕
𝜕𝜕𝜕𝜕 (

𝜕𝜕𝑛𝑛+𝑚𝑚−1𝑓𝑓
𝜕𝜕𝑥𝑥𝑛𝑛−1𝜕𝜕𝑦𝑦𝑚𝑚 (𝑥𝑥𝑘𝑘, 𝑦𝑦𝑘𝑘))                                                                                                 

=  ∑ 𝑤𝑤𝑘𝑘,𝑧𝑧1
(1)𝑥𝑥 𝜕𝜕𝑛𝑛+𝑚𝑚−1𝑓𝑓

𝜕𝜕𝑥𝑥𝑛𝑛−1𝜕𝜕𝑦𝑦𝑚𝑚 (𝑥𝑥𝑧𝑧1, 𝑦𝑦𝑧𝑧1)                                                    
𝑁𝑁

𝑧𝑧1=1
 

                                   ⋮ 
= ∑ 𝑤𝑤𝑘𝑘,𝑧𝑧1

(1)𝑥𝑥𝑤𝑤𝑧𝑧1,𝑧𝑧2
(1)𝑥𝑥 ⋯𝑤𝑤𝑧𝑧𝑛𝑛−1,𝑧𝑧𝑛𝑛

(1)𝑥𝑥⏟              
𝑛𝑛

𝑤𝑤𝑧𝑧𝑛𝑛,𝑧𝑧𝑛𝑛+1
(1)𝑦𝑦 ⋯𝑤𝑤𝑧𝑧𝑛𝑛+𝑚𝑚−1,𝑧𝑧𝑛𝑛+𝑚𝑚

(1)𝑦𝑦
⏟              

𝑚𝑚

𝑓𝑓(𝑥𝑥𝑧𝑧𝑛𝑛+𝑚𝑚, 𝑦𝑦𝑧𝑧𝑛𝑛+𝑚𝑚)
𝑁𝑁

𝑧𝑧1,⋯,𝑧𝑧𝑛𝑛+𝑚𝑚=1
.          (8) 

 
By rewriting the right hand side of Eq. (6) and Eq. (7) as 

∑ 𝑤𝑤𝑘𝑘,𝑧𝑧1
(1)𝑥𝑥𝑤𝑤𝑧𝑧1,𝑧𝑧2

(1)𝑥𝑥 ⋯𝑤𝑤𝑧𝑧𝑛𝑛−1,𝑧𝑧𝑛𝑛
(1)𝑥𝑥⏟              

𝑛𝑛

𝑓𝑓(𝑥𝑥𝑧𝑧𝑛𝑛, 𝑦𝑦𝑧𝑧𝑛𝑛)
𝑁𝑁

𝑧𝑧1,⋯,𝑧𝑧𝑛𝑛=1
, ∑ 𝑤𝑤𝑘𝑘,𝑧𝑧1

(1)𝑦𝑦𝑤𝑤𝑧𝑧1,𝑧𝑧2
(1)𝑦𝑦 ⋯𝑤𝑤𝑧𝑧𝑚𝑚−1,𝑧𝑧𝑚𝑚

(1)𝑦𝑦
⏟                

𝑚𝑚
𝑓𝑓(𝑥𝑥𝑧𝑧𝑚𝑚, 𝑦𝑦𝑧𝑧𝑚𝑚)

𝑁𝑁

𝑧𝑧1,⋯,𝑧𝑧𝑚𝑚=1
,   

𝑷𝑷(𝑋𝑋) =∑𝜉𝜉𝑖𝑖𝑃𝑃𝑖𝑖(𝑋𝑋),                                                                         (4)
𝑚𝑚

𝑖𝑖=1
 

where = (𝑞𝑞−1+𝑑𝑑)!
𝑑𝑑!(𝑞𝑞−1)!  . To determine the coefficients (𝜆𝜆1, 𝜆𝜆2,⋯ , 𝜆𝜆𝑁𝑁) and  (𝜉𝜉1, 𝜉𝜉2,⋯ , 𝜉𝜉𝑚𝑚), an extra  𝑚𝑚 

equations are required in addition to the  𝑁𝑁 equations resulting from collocating Eq. (2) at the 
 𝑁𝑁 points. This is ensured by the  𝑚𝑚 conditions for Eq. (2), 

∑𝜆𝜆𝑗𝑗𝑃𝑃𝑖𝑖(𝑋𝑋𝑗𝑗) = 0, 𝑖𝑖 = 1,⋯ ,𝑚𝑚.                                                              (5) 
𝑁𝑁

𝑗𝑗=1
 

 
2.2 DQ Method for Partial Derivative Approximation in Higher Dimensions 
 In this section, we explain the method to approximate the spatial derivative in two-
dimensions. It is noted that the basic idea of the DQ method is that any derivative can be 
approximated by a linear weighted sum of the function values at some mesh points. We retain 
this idea but relax the condition of choosing function values along a mesh line. In other words, 
for a two-dimensional problem, any spatial derivative is approximated by a linear weighted 
sum the function values on the whole two-dimensional domain. In this approximation, a mesh 
point in the two-dimensional domain is represented by one index 𝑘𝑘, while in the conventional 
DQ approximation, the mesh point is represented by two indices 𝑖𝑖, 𝑗𝑗. If the mesh is structured, 
it is easy to establish the relationship between 𝑖𝑖, 𝑗𝑗, and 𝑘𝑘. For example 𝑘𝑘 can be written as 
𝑘𝑘 = (𝑖𝑖 − 1)𝑁𝑁2 + 𝑗𝑗, 𝑖𝑖 = 1,⋯ ,𝑁𝑁1;  𝑗𝑗 = 1,⋯ ,𝑁𝑁2 . As 𝑖𝑖 varies from 1 to 𝑁𝑁1 and  𝑗𝑗 varies from 1 to 𝑁𝑁2 , 𝑘𝑘 
varies over 1 to 𝑁𝑁 = 𝑁𝑁1 × 𝑁𝑁2. The DQ approximation for the 𝑛𝑛-th-order derivative with respect 
to 𝑥𝑥, and the 𝑚𝑚-th-order derivative with respect to 𝑦𝑦 at (𝑥𝑥𝑘𝑘, 𝑦𝑦𝑘𝑘) can then be written as 

𝜕𝜕𝑛𝑛𝑓𝑓
𝜕𝜕𝑥𝑥𝑛𝑛 (𝑥𝑥𝑘𝑘, 𝑦𝑦𝑘𝑘) = ∑𝑤𝑤𝑘𝑘,𝑧𝑧

(𝑛𝑛)𝑥𝑥 𝑓𝑓(𝑥𝑥𝑧𝑧, 𝑦𝑦𝑧𝑧)
𝑁𝑁

𝑧𝑧=1
,                                                         (6) 

𝜕𝜕𝑚𝑚𝑓𝑓
𝜕𝜕𝑦𝑦𝑚𝑚 (𝑥𝑥𝑘𝑘, 𝑦𝑦𝑘𝑘) = ∑𝑤𝑤𝑘𝑘,𝑧𝑧

(𝑚𝑚)𝑦𝑦 𝑓𝑓(𝑥𝑥𝑧𝑧, 𝑦𝑦𝑧𝑧)
𝑁𝑁

𝑧𝑧=1
.                                                       (7) 

Shu et al. employed this technique and made a novel and effective algorithm for the use of 
RBFs to solve the PDEs [3]. Instead of using polynomials for determining coefficients, they 
applied RBFs as test functions. In order to apply the original DQ method to approximate the 
PDE with mixed derivative terms, they should be removed by making some change of 
coordinates. However, we can improve the DQ method by using Eq. (6) and Eq. (7) so that 
we can easily approximate a PDE with mixed derivative terms as follows: 

𝜕𝜕𝑛𝑛+𝑚𝑚𝑓𝑓
𝜕𝜕𝑥𝑥𝑛𝑛𝜕𝜕𝑦𝑦𝑚𝑚 (𝑥𝑥𝑘𝑘, 𝑦𝑦𝑘𝑘) =

𝜕𝜕
𝜕𝜕𝜕𝜕 (

𝜕𝜕𝑛𝑛+𝑚𝑚−1𝑓𝑓
𝜕𝜕𝑥𝑥𝑛𝑛−1𝜕𝜕𝑦𝑦𝑚𝑚 (𝑥𝑥𝑘𝑘, 𝑦𝑦𝑘𝑘))                                                                                                 

=  ∑ 𝑤𝑤𝑘𝑘,𝑧𝑧1
(1)𝑥𝑥 𝜕𝜕𝑛𝑛+𝑚𝑚−1𝑓𝑓

𝜕𝜕𝑥𝑥𝑛𝑛−1𝜕𝜕𝑦𝑦𝑚𝑚 (𝑥𝑥𝑧𝑧1, 𝑦𝑦𝑧𝑧1)                                                    
𝑁𝑁

𝑧𝑧1=1
 

                                   ⋮ 
= ∑ 𝑤𝑤𝑘𝑘,𝑧𝑧1

(1)𝑥𝑥𝑤𝑤𝑧𝑧1,𝑧𝑧2
(1)𝑥𝑥 ⋯𝑤𝑤𝑧𝑧𝑛𝑛−1,𝑧𝑧𝑛𝑛

(1)𝑥𝑥⏟              
𝑛𝑛

𝑤𝑤𝑧𝑧𝑛𝑛,𝑧𝑧𝑛𝑛+1
(1)𝑦𝑦 ⋯𝑤𝑤𝑧𝑧𝑛𝑛+𝑚𝑚−1,𝑧𝑧𝑛𝑛+𝑚𝑚

(1)𝑦𝑦
⏟              

𝑚𝑚

𝑓𝑓(𝑥𝑥𝑧𝑧𝑛𝑛+𝑚𝑚, 𝑦𝑦𝑧𝑧𝑛𝑛+𝑚𝑚)
𝑁𝑁

𝑧𝑧1,⋯,𝑧𝑧𝑛𝑛+𝑚𝑚=1
.          (8) 

 
By rewriting the right hand side of Eq. (6) and Eq. (7) as 

∑ 𝑤𝑤𝑘𝑘,𝑧𝑧1
(1)𝑥𝑥𝑤𝑤𝑧𝑧1,𝑧𝑧2

(1)𝑥𝑥 ⋯𝑤𝑤𝑧𝑧𝑛𝑛−1,𝑧𝑧𝑛𝑛
(1)𝑥𝑥⏟              

𝑛𝑛

𝑓𝑓(𝑥𝑥𝑧𝑧𝑛𝑛, 𝑦𝑦𝑧𝑧𝑛𝑛)
𝑁𝑁

𝑧𝑧1,⋯,𝑧𝑧𝑛𝑛=1
, ∑ 𝑤𝑤𝑘𝑘,𝑧𝑧1

(1)𝑦𝑦𝑤𝑤𝑧𝑧1,𝑧𝑧2
(1)𝑦𝑦 ⋯𝑤𝑤𝑧𝑧𝑚𝑚−1,𝑧𝑧𝑚𝑚

(1)𝑦𝑦
⏟                

𝑚𝑚
𝑓𝑓(𝑥𝑥𝑧𝑧𝑚𝑚, 𝑦𝑦𝑧𝑧𝑚𝑚)

𝑁𝑁

𝑧𝑧1,⋯,𝑧𝑧𝑚𝑚=1
,   

we can also decrease the computation time significantly. In the following subsection, we will 
show that the weighting coefficients 𝑤𝑤𝑖𝑖,𝑗𝑗

(1)𝑥𝑥 and 𝑤𝑤𝑖𝑖,𝑗𝑗
(1)𝑦𝑦 can be determined by the aforementioned 

function approximation of RBFs and the analysis of a linear vector space. 
 
2.3 RBF-DQ Approximation 
 In this subsection, we will use the MQ-RBFs as the test functions to determine the 
weighting coefficients in the DQ approximation of derivatives for a two-dimensional problem. 
Suppose that the solution of a PDE is continuous, which can be approximated by MQ-RBFs 
in Eq. (3) and only a constant is included in the polynomial term  𝑷𝑷(𝑥𝑥, 𝑦𝑦). So, for a two-
dimensional case, the function approximation can be written as 

𝑓𝑓(𝑋𝑋) ≅ ∑ 𝜆𝜆𝑗𝑗𝜑𝜑(|(𝑥𝑥, 𝑦𝑦) − (𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)|)
𝑁𝑁

𝑗𝑗=1
+ 𝜇𝜇,                                                      (9) 

Eq. (9) has  𝑁𝑁 + 1 unknown coefficients and can only be applied at  𝑁𝑁 nodes. So, we need an 
additional equation to close the system. To make the problem be well-posed, this additional 
equation can be made by Eq. (5) in which the sum of the expansion coefficients to be zero. 
As a result, we have 

∑ 𝜆𝜆𝑗𝑗 = 0 ⇒  𝜆𝜆𝑖𝑖 = − ∑ 𝜆𝜆𝑗𝑗

𝑁𝑁

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖
 ,                                                        (10)

𝑁𝑁

𝑗𝑗=1
 

substituting Eq. (10) into Eq. (9) gives 

𝑓𝑓(𝑋𝑋) ≅ ∑ 𝜆𝜆𝑗𝑗 (𝜑𝜑(|(𝑥𝑥, 𝑦𝑦) − (𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)|) − 𝜑𝜑(|(𝑥𝑥, 𝑦𝑦) − (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)|)) + 𝜇𝜇,                    (11)
𝑁𝑁

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖
 

the number of unknowns in Eq. (9) is reduced to N. As no confusion rises, μ can be replaced 
by 𝜆𝜆𝑖𝑖 and Eq. (11) can be written as 

𝑓𝑓(𝑥𝑥, 𝑦𝑦) ≅ ∑ 𝜆𝜆𝑗𝑗 (𝜑𝜑(|(𝑥𝑥, 𝑦𝑦) − (𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)|) − 𝜑𝜑(|(𝑥𝑥, 𝑦𝑦) − (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)|)) + 𝜆𝜆𝑖𝑖.                   (12)
𝑁𝑁

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖
 

By setting 𝑔𝑔𝑗𝑗(𝑥𝑥, 𝑦𝑦) = 𝜑𝜑(|(𝑥𝑥, 𝑦𝑦) − (𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)|) − 𝜑𝜑(|(𝑥𝑥, 𝑦𝑦) − (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)|), 𝑗𝑗 = 1, ⋯ , 𝑖𝑖 − 1, 𝑖𝑖 + 1, ⋯ , 𝑁𝑁, Eq. (12) 
can be further written as 

𝑓𝑓(𝑥𝑥, 𝑦𝑦) ≅ ∑ 𝜆𝜆𝑗𝑗𝑔𝑔𝑗𝑗(𝑥𝑥, 𝑦𝑦) + 𝜆𝜆𝑖𝑖,                                                         (13)
𝑁𝑁

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖
 

the form of Eq. (13) constructs an  𝑁𝑁-dimensional linear vector space 𝑉𝑉𝑁𝑁 . A set of base 
functions in  𝑉𝑉𝑁𝑁  can be taken as  𝑞𝑞𝑗𝑗 = 𝑔𝑔𝑗𝑗(𝑥𝑥, 𝑦𝑦) = 𝜑𝜑(|(𝑥𝑥, 𝑦𝑦) − (𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)|) − 𝜑𝜑(|(𝑥𝑥, 𝑦𝑦) − (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)|), 𝑗𝑗 =
1, ⋯ , 𝑖𝑖 − 1, 𝑖𝑖 + 1 , ⋯ , 𝑁𝑁, 𝑞𝑞𝑖𝑖 = 1 . From the concept of linear independence, the bases of a vector 
space can be considered as linearly independent subset that spans the entire space. From the 
property of a linear vector space, if all the base functions satisfy the linear Eq. (6) and Eq. (7), 
so does any function in the space 𝑉𝑉𝑁𝑁 represented by Eq. (13). There is an interesting feature. 
From Eq. (13), while all the base functions are given, the function  𝑓𝑓(𝑥𝑥, 𝑦𝑦) is still unknown since 
the coefficients 𝜆𝜆𝑖𝑖 are unknown. However, when all the base functions satisfy Eq. (6) and Eq. 
(7), we can guarantee that  𝑓𝑓(𝑥𝑥, 𝑦𝑦) also satisfies Eq. (6) and Eq. (7). In other words, we can 
guarantee that the solution of a PDE approximated by the RBF satisfies Eq. (6) and Eq. (7). 
Thus, when the weighting coefficients of DQ approximation are determined by all the base 
functions, they can be used to discretize the derivatives in a PDE. That is the essence of the 
RBF-DQ method. Using the idea of DQ method, the weighting coefficients of the first order 
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we can also decrease the computation time significantly. In the following subsection, we will 
show that the weighting coefficients 𝑤𝑤𝑖𝑖,𝑗𝑗

(1)𝑥𝑥 and 𝑤𝑤𝑖𝑖,𝑗𝑗
(1)𝑦𝑦 can be determined by the aforementioned 

function approximation of RBFs and the analysis of a linear vector space. 
 
2.3 RBF-DQ Approximation 
 In this subsection, we will use the MQ-RBFs as the test functions to determine the 
weighting coefficients in the DQ approximation of derivatives for a two-dimensional problem. 
Suppose that the solution of a PDE is continuous, which can be approximated by MQ-RBFs 
in Eq. (3) and only a constant is included in the polynomial term  𝑷𝑷(𝑥𝑥, 𝑦𝑦). So, for a two-
dimensional case, the function approximation can be written as 

𝑓𝑓(𝑋𝑋) ≅ ∑ 𝜆𝜆𝑗𝑗𝜑𝜑(|(𝑥𝑥, 𝑦𝑦) − (𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)|)
𝑁𝑁

𝑗𝑗=1
+ 𝜇𝜇,                                                      (9) 

Eq. (9) has  𝑁𝑁 + 1 unknown coefficients and can only be applied at  𝑁𝑁 nodes. So, we need an 
additional equation to close the system. To make the problem be well-posed, this additional 
equation can be made by Eq. (5) in which the sum of the expansion coefficients to be zero. 
As a result, we have 

∑ 𝜆𝜆𝑗𝑗 = 0 ⇒  𝜆𝜆𝑖𝑖 = − ∑ 𝜆𝜆𝑗𝑗

𝑁𝑁

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖
 ,                                                        (10)

𝑁𝑁

𝑗𝑗=1
 

substituting Eq. (10) into Eq. (9) gives 

𝑓𝑓(𝑋𝑋) ≅ ∑ 𝜆𝜆𝑗𝑗 (𝜑𝜑(|(𝑥𝑥, 𝑦𝑦) − (𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)|) − 𝜑𝜑(|(𝑥𝑥, 𝑦𝑦) − (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)|)) + 𝜇𝜇,                    (11)
𝑁𝑁

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖
 

the number of unknowns in Eq. (9) is reduced to N. As no confusion rises, μ can be replaced 
by 𝜆𝜆𝑖𝑖 and Eq. (11) can be written as 

𝑓𝑓(𝑥𝑥, 𝑦𝑦) ≅ ∑ 𝜆𝜆𝑗𝑗 (𝜑𝜑(|(𝑥𝑥, 𝑦𝑦) − (𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)|) − 𝜑𝜑(|(𝑥𝑥, 𝑦𝑦) − (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)|)) + 𝜆𝜆𝑖𝑖.                   (12)
𝑁𝑁

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖
 

By setting 𝑔𝑔𝑗𝑗(𝑥𝑥, 𝑦𝑦) = 𝜑𝜑(|(𝑥𝑥, 𝑦𝑦) − (𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)|) − 𝜑𝜑(|(𝑥𝑥, 𝑦𝑦) − (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)|), 𝑗𝑗 = 1, ⋯ , 𝑖𝑖 − 1, 𝑖𝑖 + 1, ⋯ , 𝑁𝑁, Eq. (12) 
can be further written as 

𝑓𝑓(𝑥𝑥, 𝑦𝑦) ≅ ∑ 𝜆𝜆𝑗𝑗𝑔𝑔𝑗𝑗(𝑥𝑥, 𝑦𝑦) + 𝜆𝜆𝑖𝑖,                                                         (13)
𝑁𝑁

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖
 

the form of Eq. (13) constructs an  𝑁𝑁-dimensional linear vector space 𝑉𝑉𝑁𝑁 . A set of base 
functions in  𝑉𝑉𝑁𝑁  can be taken as  𝑞𝑞𝑗𝑗 = 𝑔𝑔𝑗𝑗(𝑥𝑥, 𝑦𝑦) = 𝜑𝜑(|(𝑥𝑥, 𝑦𝑦) − (𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)|) − 𝜑𝜑(|(𝑥𝑥, 𝑦𝑦) − (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)|), 𝑗𝑗 =
1, ⋯ , 𝑖𝑖 − 1, 𝑖𝑖 + 1 , ⋯ , 𝑁𝑁, 𝑞𝑞𝑖𝑖 = 1 . From the concept of linear independence, the bases of a vector 
space can be considered as linearly independent subset that spans the entire space. From the 
property of a linear vector space, if all the base functions satisfy the linear Eq. (6) and Eq. (7), 
so does any function in the space 𝑉𝑉𝑁𝑁 represented by Eq. (13). There is an interesting feature. 
From Eq. (13), while all the base functions are given, the function  𝑓𝑓(𝑥𝑥, 𝑦𝑦) is still unknown since 
the coefficients 𝜆𝜆𝑖𝑖 are unknown. However, when all the base functions satisfy Eq. (6) and Eq. 
(7), we can guarantee that  𝑓𝑓(𝑥𝑥, 𝑦𝑦) also satisfies Eq. (6) and Eq. (7). In other words, we can 
guarantee that the solution of a PDE approximated by the RBF satisfies Eq. (6) and Eq. (7). 
Thus, when the weighting coefficients of DQ approximation are determined by all the base 
functions, they can be used to discretize the derivatives in a PDE. That is the essence of the 
RBF-DQ method. Using the idea of DQ method, the weighting coefficients of the first order 
partial derivatives can be determined by substituting the entire base functions 𝑞𝑞1,⋯ , 𝑞𝑞𝑁𝑁 into Eq. 
(6), as 

𝜕𝜕𝑞𝑞𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)
𝜕𝜕𝜕𝜕 = ∑ 𝑤𝑤𝑖𝑖,𝑘𝑘

(𝑛𝑛)𝑥𝑥 = 0,                                                                (14)
𝑁𝑁

𝑘𝑘=1
 

𝜕𝜕𝑞𝑞𝑗𝑗(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)
𝜕𝜕𝜕𝜕 = ∑ 𝑤𝑤𝑖𝑖,𝑘𝑘

(𝑛𝑛)𝑥𝑥𝑞𝑞𝑗𝑗(𝑥𝑥𝑘𝑘, 𝑦𝑦𝑘𝑘), 𝑗𝑗 = 1,⋯ ,𝑁𝑁, 𝑗𝑗 ≠ 𝑖𝑖,                                          (15)
𝑁𝑁

𝑘𝑘=1
 

For the given 𝑖𝑖, equation system (14) and (15) has N unknowns with  𝑁𝑁 equations. The matrix 
form for the weighting coefficients can be written as 

𝒒𝒒𝑖𝑖
(𝑛𝑛)𝑥𝑥 = [𝑸𝑸]𝑾𝑾𝑖𝑖

(𝑛𝑛)𝑥𝑥,                                                                       (16)  
where 

𝒒𝒒𝑖𝑖
(𝑛𝑛)𝑥𝑥 = [0, 𝜕𝜕𝑞𝑞1(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)

𝜕𝜕𝜕𝜕 ,⋯ , 𝜕𝜕𝑞𝑞𝑖𝑖−1(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)
𝜕𝜕𝜕𝜕 , 𝜕𝜕𝑞𝑞𝑖𝑖+1(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)

𝜕𝜕𝜕𝜕 ⋯ , 𝜕𝜕𝑞𝑞𝑁𝑁(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)
𝜕𝜕𝜕𝜕 ]𝑻𝑻,𝑾𝑾𝑖𝑖

(𝑛𝑛)𝑥𝑥 = [𝑊𝑊𝑖𝑖,1
(𝑛𝑛)𝑥𝑥,⋯ ,𝑊𝑊𝑖𝑖,𝑁𝑁

(𝑛𝑛)𝑥𝑥]𝑇𝑇, 
 

and 

[𝑸𝑸] =

[
 
 
 
 
 
 1 ⋯ 1

𝑞𝑞1(𝑥𝑥1, 𝑦𝑦1)
⋮

𝑞𝑞𝑖𝑖−1(𝑥𝑥1, 𝑦𝑦1)

⋯
⋱
⋯

𝑞𝑞1(𝑥𝑥𝑁𝑁, 𝑦𝑦𝑁𝑁)
⋮

𝑞𝑞𝑖𝑖−1(𝑥𝑥𝑁𝑁, 𝑦𝑦𝑁𝑁)
𝑞𝑞𝑖𝑖+1(𝑥𝑥1, 𝑦𝑦1)

⋮
𝑞𝑞𝑁𝑁(𝑥𝑥1, 𝑦𝑦1)

⋯
⋱
⋯

𝑞𝑞𝑖𝑖+1(𝑥𝑥1, 𝑦𝑦1)
⋮

𝑞𝑞𝑁𝑁(𝑥𝑥𝑁𝑁, 𝑦𝑦𝑁𝑁) ]
 
 
 
 
 
 

 .  

Clearly, there exists a unique solution only if the collocation matrix [𝑸𝑸] is non-singular. The 
non-singularity of the collocation matrix [𝑸𝑸]  depends on the properties of used RBFs. 
Micchelli [13] proved that matrix [𝐐𝐐] is conditionally positive definite for MQ-RBFs. This fact 
cannot guarantee the non-singularity of matrix [𝐐𝐐]. Hon [14] showed that cases of singularity 
are quite rare and not serious objection to a valuable numerical technique. Therefore, by using 
Eq. (16) with 𝑛𝑛 = 1, the coefficient vector 𝑾𝑾i

(1)x can be obtained as 𝑾𝑾𝑖𝑖
(1)𝑥𝑥 = [𝑸𝑸]−1𝒒𝒒𝑖𝑖

(1)𝑥𝑥. Then, 
the coefficient vector 𝑾𝑾𝑖𝑖

(1)𝑥𝑥  can be used to approximate the first-order derivative in the x 
direction for any unknown smooth function at node 𝑖𝑖 in Eq. (8). In a similar manner, all the 
base functions are substituted into Eq. (7) to approximate the first-order derivative in the 𝑦𝑦 
direction for any unknown smooth function at node 𝑖𝑖. 

 
3. AN IMPRCVED GLOBAL RBF-DQ METHOD FOR MULTI-DIMENSIONAL BS EQUATION 
 In this section, to descritize the PDE (1) arising from GBM model: Let  𝑈𝑈(𝑡𝑡, 𝑋𝑋) =
𝑉𝑉(𝑡𝑡, 𝑆𝑆),𝑥𝑥𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑙𝑙(𝑠𝑠𝑖𝑖), 𝑋𝑋 = (𝑥𝑥1,⋯ , 𝑥𝑥𝑑𝑑) and payoff 𝑔𝑔(𝑆𝑆) = ℎ(𝑋𝑋). Then the PDE is rewritten as  

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 1

2 ∑ 𝜌𝜌𝑖𝑖𝑖𝑖𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗
𝜕𝜕2𝑈𝑈

𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗
+ ∑(𝑟𝑟 − 1

2𝜎𝜎𝑖𝑖
2) 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥𝑖𝑖
− 𝑟𝑟𝑟𝑟(𝑡𝑡, 𝑋𝑋) = 0,                         (17) 

𝑑𝑑

𝑖𝑖=1

𝑑𝑑

𝑖𝑖,𝑗𝑗=1
 

or − ∂U
∂t = 𝕺𝕺U where 𝕺𝕺 represent the differential operator. The domain is discretized by taking 

𝑁𝑁 knots according to the method used in previous section and we would like to discrete the 
Eq. (17) with respect to time. We introduce a weight 𝜃𝜃 and apply the  𝜃𝜃 implicit scheme to the 
problem as 

−𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 |(𝑡𝑡𝑛𝑛,𝑋𝑋𝑘𝑘) ≅ 𝑈̃𝑈𝑘𝑘

𝑛𝑛 − 𝑈̃𝑈𝑘𝑘
𝑛𝑛−1

∆𝑡𝑡 = (1 − 𝜃𝜃)𝕺𝕺𝑈̃𝑈|(𝑡𝑡𝑛𝑛,𝑋𝑋𝑘𝑘) + 𝜃𝜃𝕺𝕺𝑈̃𝑈|(𝑡𝑡𝑛𝑛−1,𝑋𝑋𝑘𝑘),                       (18) 
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partial derivatives can be determined by substituting the entire base functions 𝑞𝑞1,⋯ , 𝑞𝑞𝑁𝑁 into Eq. 
(6), as 

𝜕𝜕𝑞𝑞𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)
𝜕𝜕𝜕𝜕 = ∑ 𝑤𝑤𝑖𝑖,𝑘𝑘

(𝑛𝑛)𝑥𝑥 = 0,                                                                (14)
𝑁𝑁

𝑘𝑘=1
 

𝜕𝜕𝑞𝑞𝑗𝑗(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)
𝜕𝜕𝜕𝜕 = ∑ 𝑤𝑤𝑖𝑖,𝑘𝑘

(𝑛𝑛)𝑥𝑥𝑞𝑞𝑗𝑗(𝑥𝑥𝑘𝑘, 𝑦𝑦𝑘𝑘), 𝑗𝑗 = 1,⋯ ,𝑁𝑁, 𝑗𝑗 ≠ 𝑖𝑖,                                          (15)
𝑁𝑁

𝑘𝑘=1
 

For the given 𝑖𝑖, equation system (14) and (15) has N unknowns with  𝑁𝑁 equations. The matrix 
form for the weighting coefficients can be written as 

𝒒𝒒𝑖𝑖
(𝑛𝑛)𝑥𝑥 = [𝑸𝑸]𝑾𝑾𝑖𝑖

(𝑛𝑛)𝑥𝑥,                                                                       (16)  
where 

𝒒𝒒𝑖𝑖
(𝑛𝑛)𝑥𝑥 = [0, 𝜕𝜕𝑞𝑞1(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)

𝜕𝜕𝜕𝜕 ,⋯ , 𝜕𝜕𝑞𝑞𝑖𝑖−1(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)
𝜕𝜕𝜕𝜕 , 𝜕𝜕𝑞𝑞𝑖𝑖+1(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)

𝜕𝜕𝜕𝜕 ⋯ , 𝜕𝜕𝑞𝑞𝑁𝑁(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)
𝜕𝜕𝜕𝜕 ]𝑻𝑻,𝑾𝑾𝑖𝑖

(𝑛𝑛)𝑥𝑥 = [𝑊𝑊𝑖𝑖,1
(𝑛𝑛)𝑥𝑥,⋯ ,𝑊𝑊𝑖𝑖,𝑁𝑁

(𝑛𝑛)𝑥𝑥]𝑇𝑇, 
 

and 

[𝑸𝑸] =

[
 
 
 
 
 
 1 ⋯ 1

𝑞𝑞1(𝑥𝑥1, 𝑦𝑦1)
⋮

𝑞𝑞𝑖𝑖−1(𝑥𝑥1, 𝑦𝑦1)

⋯
⋱
⋯

𝑞𝑞1(𝑥𝑥𝑁𝑁, 𝑦𝑦𝑁𝑁)
⋮

𝑞𝑞𝑖𝑖−1(𝑥𝑥𝑁𝑁, 𝑦𝑦𝑁𝑁)
𝑞𝑞𝑖𝑖+1(𝑥𝑥1, 𝑦𝑦1)

⋮
𝑞𝑞𝑁𝑁(𝑥𝑥1, 𝑦𝑦1)

⋯
⋱
⋯

𝑞𝑞𝑖𝑖+1(𝑥𝑥1, 𝑦𝑦1)
⋮

𝑞𝑞𝑁𝑁(𝑥𝑥𝑁𝑁, 𝑦𝑦𝑁𝑁) ]
 
 
 
 
 
 

 .  

Clearly, there exists a unique solution only if the collocation matrix [𝑸𝑸] is non-singular. The 
non-singularity of the collocation matrix [𝑸𝑸]  depends on the properties of used RBFs. 
Micchelli [13] proved that matrix [𝐐𝐐] is conditionally positive definite for MQ-RBFs. This fact 
cannot guarantee the non-singularity of matrix [𝐐𝐐]. Hon [14] showed that cases of singularity 
are quite rare and not serious objection to a valuable numerical technique. Therefore, by using 
Eq. (16) with 𝑛𝑛 = 1, the coefficient vector 𝑾𝑾i

(1)x can be obtained as 𝑾𝑾𝑖𝑖
(1)𝑥𝑥 = [𝑸𝑸]−1𝒒𝒒𝑖𝑖

(1)𝑥𝑥. Then, 
the coefficient vector 𝑾𝑾𝑖𝑖

(1)𝑥𝑥  can be used to approximate the first-order derivative in the x 
direction for any unknown smooth function at node 𝑖𝑖 in Eq. (8). In a similar manner, all the 
base functions are substituted into Eq. (7) to approximate the first-order derivative in the 𝑦𝑦 
direction for any unknown smooth function at node 𝑖𝑖. 

 
3. AN IMPRCVED GLOBAL RBF-DQ METHOD FOR MULTI-DIMENSIONAL BS EQUATION 
 In this section, to descritize the PDE (1) arising from GBM model: Let  𝑈𝑈(𝑡𝑡, 𝑋𝑋) =
𝑉𝑉(𝑡𝑡, 𝑆𝑆),𝑥𝑥𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑙𝑙(𝑠𝑠𝑖𝑖), 𝑋𝑋 = (𝑥𝑥1,⋯ , 𝑥𝑥𝑑𝑑) and payoff 𝑔𝑔(𝑆𝑆) = ℎ(𝑋𝑋). Then the PDE is rewritten as  

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 1

2 ∑ 𝜌𝜌𝑖𝑖𝑖𝑖𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗
𝜕𝜕2𝑈𝑈

𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗
+ ∑(𝑟𝑟 − 1

2𝜎𝜎𝑖𝑖
2) 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥𝑖𝑖
− 𝑟𝑟𝑟𝑟(𝑡𝑡, 𝑋𝑋) = 0,                         (17) 

𝑑𝑑

𝑖𝑖=1

𝑑𝑑

𝑖𝑖,𝑗𝑗=1
 

or − ∂U
∂t = 𝕺𝕺U where 𝕺𝕺 represent the differential operator. The domain is discretized by taking 

𝑁𝑁 knots according to the method used in previous section and we would like to discrete the 
Eq. (17) with respect to time. We introduce a weight 𝜃𝜃 and apply the  𝜃𝜃 implicit scheme to the 
problem as 

−𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 |(𝑡𝑡𝑛𝑛,𝑋𝑋𝑘𝑘) ≅ 𝑈̃𝑈𝑘𝑘

𝑛𝑛 − 𝑈̃𝑈𝑘𝑘
𝑛𝑛−1

∆𝑡𝑡 = (1 − 𝜃𝜃)𝕺𝕺𝑈̃𝑈|(𝑡𝑡𝑛𝑛,𝑋𝑋𝑘𝑘) + 𝜃𝜃𝕺𝕺𝑈̃𝑈|(𝑡𝑡𝑛𝑛−1,𝑋𝑋𝑘𝑘),                       (18) 

denote 𝑈̃𝑈|(𝑡𝑡𝑛𝑛,𝑋𝑋𝑘𝑘) = 𝑈̃𝑈|(𝑡𝑡𝑛𝑛,𝑥𝑥1
𝑘𝑘,⋯,𝑥𝑥𝑑𝑑

𝑘𝑘) = 𝑈̃𝑈𝑘𝑘
𝑛𝑛, where represents an approximation for the function value 

of 𝑈𝑈 at knot  𝑘𝑘 and time 𝑡𝑡𝑛𝑛. By applying Eq. (8), Eq. (17) can be rewritten in a discrete form as 
follows: 
 

(1 + 𝑟𝑟(1 − 𝜃𝜃)∆𝑡𝑡)𝑈̃𝑈𝑘𝑘
𝑛𝑛 − (1 − 𝜃𝜃)∆𝑡𝑡 (∑ ∑ (𝑟𝑟 − 1

2 𝜎𝜎𝑖𝑖
2)  𝑤𝑤𝑘𝑘,𝑧𝑧

(1)𝑥𝑥𝑖𝑖

𝑁𝑁

𝑧𝑧=1

𝑑𝑑

𝑖𝑖=1
𝑈̃𝑈𝑧𝑧𝑛𝑛 + ∑ ∑ 𝜌𝜌𝑖𝑖𝑖𝑖𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗𝑤𝑤𝑘𝑘,𝑜𝑜

(1)𝑥𝑥𝑖𝑖𝑤𝑤𝑜𝑜,𝑧𝑧
(1)𝑥𝑥𝑗𝑗 𝑈̃𝑈𝑧𝑧𝑛𝑛

𝑁𝑁

𝑜𝑜,𝑧𝑧=1

𝑑𝑑

𝑖𝑖,𝑗𝑗=1
)            

= (1 − 𝑟𝑟𝑟𝑟∆𝑡𝑡)𝑈̃𝑈𝑘𝑘
𝑛𝑛−1 + 𝜃𝜃∆𝑡𝑡 (∑ ∑ (𝑟𝑟 − 1

2 𝜎𝜎𝑖𝑖
2)  𝑤𝑤𝑘𝑘,𝑧𝑧

(1)𝑥𝑥𝑖𝑖

𝑁𝑁

𝑧𝑧=1

𝑑𝑑

𝑖𝑖=1
𝑈̃𝑈𝑧𝑧𝑛𝑛−1 + ∑ ∑ 𝜌𝜌𝑖𝑖𝑖𝑖𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗𝑤𝑤𝑘𝑘,𝑜𝑜

(1)𝑥𝑥𝑖𝑖 𝑤𝑤𝑜𝑜,𝑧𝑧
(1)𝑥𝑥𝑗𝑗 𝑈̃𝑈𝑧𝑧𝑛𝑛−1

𝑁𝑁

𝑜𝑜,𝑧𝑧=1

𝑑𝑑

𝑖𝑖,𝑗𝑗=1
) , (19) 

where  𝑤𝑤𝑘𝑘𝑘𝑘
(1)𝑥𝑥𝑖𝑖 represents the computed weighting coefficients in the DQ approximation for the 

first order derivatives in the 𝑥𝑥𝑖𝑖 direction in 𝑋𝑋𝑘𝑘. 
 
4. STABILITY OF THE METHOD 
 In this subsection, we study the stability of the implicit finite difference method described 
above. Let us assume that  𝑼𝑼 be exact and  𝑼̃𝑼 is the numerical solution of equation (17). Note 
that the discrete equations Eq. (19) can be rewritten as the following form 

𝑼̃𝑼𝑛𝑛 = [𝑰𝑰 + (1 − 𝜃𝜃)∆𝑡𝑡𝑫𝑫]−1[𝑰𝑰 − 𝜃𝜃∆𝑡𝑡𝑫𝑫]𝑼̃𝑼𝑛𝑛−1 = 𝑬𝑬𝑼̃𝑼𝑛𝑛−1,                                (20) 

Where 𝑫𝑫 = 𝑟𝑟 − ∑ 𝜌𝜌𝑖𝑖𝑖𝑖𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗([𝑸𝑸]−1[𝑸𝑸]𝑥𝑥𝑖𝑖)
𝑇𝑇 ([𝑸𝑸]−1[𝑸𝑸]𝑥𝑥𝑗𝑗)

𝑇𝑇
− ∑ (1 − 1

2 𝜎𝜎𝑖𝑖2) ([𝑸𝑸]−1[𝑸𝑸]𝑥𝑥𝑖𝑖)
𝑇𝑇𝑑𝑑

𝑖𝑖=1
𝑑𝑑
𝑖𝑖,𝑗𝑗=1 , is  𝑁𝑁 × 𝑁𝑁  

matrix determined by Eq. (19) in grids points and [𝑸𝑸]𝑥𝑥𝑖𝑖 = [𝒒𝒒1
(1)𝑥𝑥𝑖𝑖 , 𝒒𝒒2

(1)𝑥𝑥𝑖𝑖 , ⋯ , 𝒒𝒒𝑁𝑁
(1)𝑥𝑥𝑖𝑖 ]. The scheme 

(20) for initial value problem is stable if and only if there exists a positive constant 𝐶𝐶 independent of 
the mesh spacing and initial data such that 

‖𝑼̃𝑼𝑛𝑛‖ ≤ 𝐶𝐶‖𝑼̃𝑼0‖, 𝑛𝑛 → ∞, ∆𝑡𝑡, ∆𝑋𝑋 → 0. 

If 𝑬𝑬 depended on 𝑛𝑛 we would get a product of the operators at each time level. Taking a norm 

‖𝑼̃𝑼𝑛𝑛‖ = ‖𝑬𝑬𝑛𝑛𝑼̃𝑼0‖ ≤ ‖𝑬𝑬𝑛𝑛‖‖𝑼̃𝑼0‖. 

Therefore, the numerical scheme is stable if and only if there exists positive constant 𝐶𝐶 such 
that 

‖𝑬𝑬𝑛𝑛‖ ≤ 𝐶𝐶, 𝑛𝑛 → ∞, ∆𝑡𝑡, ∆𝑋𝑋 → 0. 

Since 𝝆𝝆(𝑬𝑬) as the spectral radius of 𝑬𝑬 provides a lower bound to any matrix norm, for the 
scheme to remain stable, we should have 𝝆𝝆(𝑬𝑬) ≤ 1 or equivalently we can say that 

| 1 − 𝜃𝜃∆𝑡𝑡𝜂𝜂𝑫𝑫
1 + (1 − 𝜃𝜃)∆𝑡𝑡𝜂𝜂𝑫𝑫

| ≤ 1,                                                             (21) 

which holds for 𝜂𝜂𝑫𝑫, eigenvalues of the matrix  𝑫𝑫, located in the right half plane. Inequality (19) 
also shows that stability of the scheme (19), in the case of RBFs with shape parameter like 
MQ, depends upon shape parameter. 
 
5. NUMERIACL EXAMPLES 
 For two-dimensional option pricing problem under GBM framework, consider the PDE 
(1) with 𝑑𝑑 = 2 and the final time condition for European call-max, 𝑔𝑔(𝑆𝑆) = max { max  { 𝑠𝑠1, 𝑠𝑠2} −
𝐸𝐸, 0}  where 𝐸𝐸  are exercise price in maturity time. The boundary conditions are 
imposed  𝑉𝑉(𝑡𝑡, 𝑠𝑠1

𝑚𝑚𝑚𝑚𝑚𝑚, 𝑠𝑠2 ) = 𝑠𝑠1
𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐸𝐸𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡), 𝑉𝑉(𝑡𝑡, 𝑠𝑠1, 𝑠𝑠2

𝑚𝑚𝑚𝑚𝑚𝑚) = 𝑠𝑠1
𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐸𝐸𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡), where  𝑠𝑠1

𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑠𝑠2
𝑚𝑚𝑚𝑚𝑚𝑚 are 
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denote 𝑈̃𝑈|(𝑡𝑡𝑛𝑛,𝑋𝑋𝑘𝑘) = 𝑈̃𝑈|(𝑡𝑡𝑛𝑛,𝑥𝑥1
𝑘𝑘,⋯,𝑥𝑥𝑑𝑑

𝑘𝑘) = 𝑈̃𝑈𝑘𝑘
𝑛𝑛, where represents an approximation for the function value 

of 𝑈𝑈 at knot  𝑘𝑘 and time 𝑡𝑡𝑛𝑛. By applying Eq. (8), Eq. (17) can be rewritten in a discrete form as 
follows: 
 

(1 + 𝑟𝑟(1 − 𝜃𝜃)∆𝑡𝑡)𝑈̃𝑈𝑘𝑘
𝑛𝑛 − (1 − 𝜃𝜃)∆𝑡𝑡 (∑ ∑ (𝑟𝑟 − 1

2 𝜎𝜎𝑖𝑖
2)  𝑤𝑤𝑘𝑘,𝑧𝑧

(1)𝑥𝑥𝑖𝑖

𝑁𝑁

𝑧𝑧=1

𝑑𝑑

𝑖𝑖=1
𝑈̃𝑈𝑧𝑧

𝑛𝑛 + ∑ ∑ 𝜌𝜌𝑖𝑖𝑖𝑖𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗𝑤𝑤𝑘𝑘,𝑜𝑜
(1)𝑥𝑥𝑖𝑖𝑤𝑤𝑜𝑜,𝑧𝑧

(1)𝑥𝑥𝑗𝑗 𝑈̃𝑈𝑧𝑧
𝑛𝑛

𝑁𝑁

𝑜𝑜,𝑧𝑧=1

𝑑𝑑

𝑖𝑖,𝑗𝑗=1
)            

= (1 − 𝑟𝑟𝑟𝑟∆𝑡𝑡)𝑈̃𝑈𝑘𝑘
𝑛𝑛−1 + 𝜃𝜃∆𝑡𝑡 (∑ ∑ (𝑟𝑟 − 1

2 𝜎𝜎𝑖𝑖
2)  𝑤𝑤𝑘𝑘,𝑧𝑧

(1)𝑥𝑥𝑖𝑖

𝑁𝑁

𝑧𝑧=1

𝑑𝑑

𝑖𝑖=1
𝑈̃𝑈𝑧𝑧

𝑛𝑛−1 + ∑ ∑ 𝜌𝜌𝑖𝑖𝑖𝑖𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗𝑤𝑤𝑘𝑘,𝑜𝑜
(1)𝑥𝑥𝑖𝑖 𝑤𝑤𝑜𝑜,𝑧𝑧

(1)𝑥𝑥𝑗𝑗 𝑈̃𝑈𝑧𝑧
𝑛𝑛−1

𝑁𝑁

𝑜𝑜,𝑧𝑧=1

𝑑𝑑

𝑖𝑖,𝑗𝑗=1
) , (19) 

where  𝑤𝑤𝑘𝑘𝑘𝑘
(1)𝑥𝑥𝑖𝑖 represents the computed weighting coefficients in the DQ approximation for the 

first order derivatives in the 𝑥𝑥𝑖𝑖 direction in 𝑋𝑋𝑘𝑘. 
 
4. STABILITY OF THE METHOD 
 In this subsection, we study the stability of the implicit finite difference method described 
above. Let us assume that  𝑼𝑼 be exact and  𝑼̃𝑼 is the numerical solution of equation (17). Note 
that the discrete equations Eq. (19) can be rewritten as the following form 

𝑼̃𝑼𝑛𝑛 = [𝑰𝑰 + (1 − 𝜃𝜃)∆𝑡𝑡𝑫𝑫]−1[𝑰𝑰 − 𝜃𝜃∆𝑡𝑡𝑫𝑫]𝑼̃𝑼𝑛𝑛−1 = 𝑬𝑬𝑼̃𝑼𝑛𝑛−1,                                (20) 

Where 𝑫𝑫 = 𝑟𝑟 − ∑ 𝜌𝜌𝑖𝑖𝑖𝑖𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗([𝑸𝑸]−1[𝑸𝑸]𝑥𝑥𝑖𝑖)
𝑇𝑇 ([𝑸𝑸]−1[𝑸𝑸]𝑥𝑥𝑗𝑗)

𝑇𝑇
− ∑ (1 − 1

2 𝜎𝜎𝑖𝑖
2) ([𝑸𝑸]−1[𝑸𝑸]𝑥𝑥𝑖𝑖)

𝑇𝑇𝑑𝑑
𝑖𝑖=1

𝑑𝑑
𝑖𝑖,𝑗𝑗=1 , is  𝑁𝑁 × 𝑁𝑁  

matrix determined by Eq. (19) in grids points and [𝑸𝑸]𝑥𝑥𝑖𝑖 = [𝒒𝒒1
(1)𝑥𝑥𝑖𝑖 , 𝒒𝒒2

(1)𝑥𝑥𝑖𝑖 , ⋯ , 𝒒𝒒𝑁𝑁
(1)𝑥𝑥𝑖𝑖 ]. The scheme 

(20) for initial value problem is stable if and only if there exists a positive constant 𝐶𝐶 independent of 
the mesh spacing and initial data such that 

‖𝑼̃𝑼𝑛𝑛‖ ≤ 𝐶𝐶‖𝑼̃𝑼0‖, 𝑛𝑛 → ∞, ∆𝑡𝑡, ∆𝑋𝑋 → 0. 

If 𝑬𝑬 depended on 𝑛𝑛 we would get a product of the operators at each time level. Taking a norm 

‖𝑼̃𝑼𝑛𝑛‖ = ‖𝑬𝑬𝑛𝑛𝑼̃𝑼0‖ ≤ ‖𝑬𝑬𝑛𝑛‖‖𝑼̃𝑼0‖. 

Therefore, the numerical scheme is stable if and only if there exists positive constant 𝐶𝐶 such 
that 

‖𝑬𝑬𝑛𝑛‖ ≤ 𝐶𝐶, 𝑛𝑛 → ∞, ∆𝑡𝑡, ∆𝑋𝑋 → 0. 

Since 𝝆𝝆(𝑬𝑬) as the spectral radius of 𝑬𝑬 provides a lower bound to any matrix norm, for the 
scheme to remain stable, we should have 𝝆𝝆(𝑬𝑬) ≤ 1 or equivalently we can say that 

| 1 − 𝜃𝜃∆𝑡𝑡𝜂𝜂𝑫𝑫
1 + (1 − 𝜃𝜃)∆𝑡𝑡𝜂𝜂𝑫𝑫

| ≤ 1,                                                             (21) 

which holds for 𝜂𝜂𝑫𝑫, eigenvalues of the matrix  𝑫𝑫, located in the right half plane. Inequality (19) 
also shows that stability of the scheme (19), in the case of RBFs with shape parameter like 
MQ, depends upon shape parameter. 
 
5. NUMERIACL EXAMPLES 
 For two-dimensional option pricing problem under GBM framework, consider the PDE 
(1) with 𝑑𝑑 = 2 and the final time condition for European call-max, 𝑔𝑔(𝑆𝑆) = max { max  { 𝑠𝑠1, 𝑠𝑠2} −
𝐸𝐸, 0}  where 𝐸𝐸  are exercise price in maturity time. The boundary conditions are 
imposed  𝑉𝑉(𝑡𝑡, 𝑠𝑠1

𝑚𝑚𝑚𝑚𝑚𝑚, 𝑠𝑠2 ) = 𝑠𝑠1
𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐸𝐸𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡), 𝑉𝑉(𝑡𝑡, 𝑠𝑠1, 𝑠𝑠2

𝑚𝑚𝑚𝑚𝑚𝑚) = 𝑠𝑠1
𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐸𝐸𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡), where  𝑠𝑠1

𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑠𝑠2
𝑚𝑚𝑚𝑚𝑚𝑚 are 

respectively maximum of 𝑠𝑠1 , maximum of s2 . For illustration of the accuracy of the proposed 
method let 𝐸𝐸 = 10, 𝑟𝑟 = 0.05, 𝜎𝜎1 = 0.22,  𝜎𝜎2 = 0.14, 𝜌𝜌12 = 0.5, 𝑇𝑇 = 0.5 with 100 time steps, 𝑠𝑠1 , 𝑠𝑠2 ∈
[𝑒𝑒−3.5, 𝑒𝑒4] and 𝜃𝜃 = 0.5. To study the behavior of the original and improved RBF-DQ method, 
different structured mesh sizes are used with shape parameter 1.25𝐷𝐷/√𝑁𝑁 as selected in [15] by 
Franke, where  𝐷𝐷 is the diameter of the minimal circle enclosing all supporting points. In order 
to approximate the solution by the original method, we should reduce the BS equation to 
canonical form in which there is no mixed derivative term (the details can be found in [16].) 
Figure 1 shows the comparison of numerical results by using original and improved RBF-DQ 
method in which the root-mean-square-error (RMSE) 

= 1
𝑁𝑁 √∑(𝑈𝑈𝑖𝑖

𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑈𝑈𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛)2 ,

𝑁𝑁

𝑖𝑖=1
 

where 𝑈𝑈𝑖𝑖
𝑆𝑆𝑆𝑆𝑆𝑆 is the solution by Stulz Method [17] which provides a closed form solution and 

𝑈𝑈𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛  is solution by numerical approximations 𝑖𝑖-th mesh point. Comparison between the 

CPU-times of two methods has been shown in  Figure 2. From the figures, it is clear that the 
improved RBF-DQ method works much better than the original one. For every simulation, 
the spectral radius of matrix 𝑬𝑬 is less than unity which guarantees the stability of the scheme. 
  
 6.CONCLUSIONS

In this study, the RBF-DQ method in which any spatial derivative is approximated by a linear 
weighted sum of  all the function values in the whole physical domain has been improved to 
approximate the PDEs with mixed derivative terms. The presented method is used for numerical 
solution of  multi-dimensional option pricing problems in this paper. Numerical results showed 
that our improved RBF-DQ scheme is an efficient approach for solution of  this kind of  the 
PDEs and faster than the original one.
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Figure 1. Comparison of  root-mean-square-error (RMSE) between the original and improved 
RBF-DQ method. 

 

 

Figure 2. Comparison of  CPU-time between the original and improved RBF-DQ method.
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