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In this wotk, we used Monte Carlo simulations to model the three-dimensional

ferromagnetic Ising spins under the influence of uniaxial and hydrostatic compressive mechanical
stresses. The study was performed with a cluster-flip algorithm to investigate how the magnetic
properties including critical behaviors depend on temperatures and the applied mechanical
stresses. From the results, the magnetic profiles as a function of temperature were obtained
and it was found that the applied stresses lowered the magnetic phase transition point. However,
the critical exponents to the relevant observables did not significantly change. This suggests
universality behavior in magnetic systems under loading environment.
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1. INTRODUCTION

Ferromagnetic matetials have long been
of interest in view of both technological and
fundamental importance [1-3] especially in
magnetic recording where high areal densities
are in demand [1]. Therefore, it is necessary
to understand ferromagnetic behavior in
details. Nevertheless, real magnetic materials
used in many applications are often affected
from stress, while the study can not be trivially
taken due to the structural complexity. Even
without external stress, e.g. in thin-films, the
stress can be induced by different lattice
spacing at the interfaces between ferromagnetic
layers and the substrate leading to strong

magnetic anisotropy [4-6] and fascinating
magnetic behavior. For instance, magnetic
systems under stresses were found to have
substantial changes in magnetic phases and
their transition [7-9]. In addition, the anti-
ferromagnet behavior can be removed or
promoted [7-10]. Furthermore, the critical
temperature was found to change by varying
the magnitude of stresses [11-17]. Howevet,
theoretical investigations usually considered
the stress in terms of lattice distortion which
alters the magnetic interaction among spins
[17,19], wheteas the direct effect of the stress
type and magnitude on magnetic properties
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is still left to identify. Therefore, it is the objective
of this study to model such a situation to
provide a better understanding of magnetic
materials under loading environment.

2. METHODOLOGIES

In this study, we considered the Ising
Hamiltonian

H =§Ji}. (r‘.j)sisj M
where the spin s, = £ 1 and <j> indicates the
sum includes only nearest neighboring pairs.
The exchange interaction J(r,) is a function
of lattice spacing 7, between sites Zand /. Since
]y' has its origin from the exchanged electron
wave functions, it should change with
changing the lattice spacing. Therefore, | is
assumed to take a Lennard-Jones potential like
Le. [17,19]
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where 7, is the stress-free lattice spacing, and
J, is the ferromagnetic exchange interaction
associated with 7. For zero stress (strain), =
r,and J. = -] which prefers ferromagnetic
phase. Since the Young’s modulus is defined
as Y=o/ [(ry, -7.)/r,] [20] and if the stress &
is in the g direction, it is possible to write
i/ =1+0/Yso ], =i =], [(1+o/V)"”
- 2(1+0/Y)¢]. Note that 6/Y < 0 is for
compressive stress which is the considered
case in this study.

However, if the stress is uniaxial type,
there occur lattice distortions for both
g direction (contraction) and the x(y)

direction (expansion). The ratio of these
distortions is defined as the Poisson ratio

1—};;(”/7’0

z
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&= A z z -
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(where in many materials, € ~ 0.3 [20]).
Therefore, r” /1, =1- g(rijz /¥, —1) =l-¢o/Y.
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Consequently, along the x(y) direction,
Jy=J7 =J,|(1=ao 1Y) " -2(1-a0 7).

Accordingly, the Hamiltonian under the effect
of the uniaxial stress can be written as

=

<ij>exy

J7ss, + > Jis;s, 3)
<ij>ez

On a contrary, for the hydrostatic type, the
stress is applied to all directions. Therefore, in
cubic structure, the lattice spacing reduces in
size with a same magnitude for all x, y and g
directions. Consequently, all nearest
neighboring spins interact with a same J£
so equation (3) still applies but one has to
note ]y v =7 e

Nevertheless, from equation (2), ]l/
becomes anti-ferromagnetic preference at
large stress i.e. [7> 0 for (+06/Y)2> 2(1+0/
Y)*. Therefore, if 6/Y< $1/2-1~-0.109, the
spins will prefer anti-ferromagnetic coupling.
However, 0<Y should be considered in
modeling the material in its elastic range [20].
Therefore, we considered the compressive
stress in the range-0.10 < 0/Y < 0.00 where
ferromagnetic preference is guaranteed. Note
that the Young’s modulus varies from materials
to materials, so there is a benefit in specifying
the stress in terms of O0/Y ratio instead of
the bare O.

Throughout this study, ], was set to 1 so
this defined the unit of ] /£, for temperatures
(where £, is the Boltzmann’s constant). Note
that by setting ] as the energy unit, the results
obtained from this work can be applied to
model any 3D Ising-like magnetic materials.
Specifically, in modeling a particular material,
J, of that material (in real energy unit which
can be calculated from electronic structure
calculations), is required to covert the units of
other parameters into appropriate units. For
instance, to convert the critical temperature
T_from ] / &, unit to Kelvin unit can be done
by direct substitution of J, while thete is no
need to repeat the simulation. In addition,
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one may use /, = +J instead of J, = -]
in modeling general anti-ferromagnetic
materials.

In this work, the simulations were done
on simple cubic lattices with a total number
of spins N = I*, where L ranges from 20 to
60, and periodic boundary is used. The
temperatures T was varied from 2.0 to 5.0
]0/ k,, and 0/Y is varied from -0.10 to 0.00.
Unit time was defined from one full update
of all spins i.e. 1 mcs. The spin configurations
were updated using the Wolff algorithm [21]
to minimize correlation time and statistical
errors [22], where clusters of spins were
formed with a probability

. 2J,s.8;
p=1-expymin 0’_TBT— @)

and flipped. Both uniaxial and hydrostatic
stresses were considered. For the uniaxial stress,
€= 0.3 was used, and J; = J7 was set if spins
couple in the x(j) direction, but ], = [<was set
for the applied stress direction (g direction).
Nonetheless, ], = Jt for all coupling directions
for the hydrostatic stress.

In each simulation, after equilibration, the
magnetization and the energy were measured
with an interval about 1 mcs. N’ (=5,000)
different configurations were used to calcu-
late the magnetization (m) :(1/N')Zf’,|mt|
(where m,= (1/N)Z, s( 1)) as well as the mag-
netic susceptibility = (N/kBT)(<m2>—(m)2),
After that, via the fourth order cumulant
U, =1-(m*)/3(m*)’ [23] and the single
histogram method [24], the critical
temperature 1. was extracted by measuring
the temperatures T (b=L/I’) from cumulant
crossing for differing sized L. and L. and
extrapolating T (b) to the limit (/z b)'—>0
[22,23]. In addition, based on the finite-size
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scaling ansatz, the scaling forms of how

m and ) scale with L. were considered i.e.
[25,20]

(m(1))=L""(L"t), ©)

2(T)y=0" (L"), ©)
where ¥, B, and Vv ate the critical exponents
associated with ¥, 7, and the correlation length
&, respectively. ¥ and #are scaling functions
and #=T/T_-1. These scaling functions for a
range of L should collapse onto a single curve
with correct critical temperature and critical
exponents, so #/V and ¢V can be extracted
from the slopes of the log-log plots of 7 or
X against L at T Similarly, 1/Vv can be
extracted from cumulant derivative since
dU, [d(k,T)c L' at T, [23]. Furthermore,
based on the hyperscaling relation [27], it is
possible to extract the system dimensionality
d = 2PB/v+yv, where d = 3 is expected for
three-dimensional (3D) behaviot.

3. RESULTS AND DISCUSSION

The magnetization and magnetic suscep-
tibility profiles are presented in Figure 1, where
the phase transition point is found to shift to
lower temperatures with increasing stresses.
This is since the increase of stresses reduces
the exchange interaction and hence the energy.
Therefore, the compressed system does not
require as much the thermal energy (and
temperature) as the uncompressed system to
go from ferromagnetic to paramagnetic
phase. The results for critical temperatures
and exponents are presented in Table 1 for
both uniaxial and hydrostatic stresses, where
the graphical representations are shown in
Figures (2,3). Notice that the hydrostatic stress
provides lower critical points than the uniaxial
stress at a same magnitude since the uniaxial

has larger exchange interaction in the x(y)
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Figure 1. The magnetic properties of 3D Ising spins with N = 60 X 60 X 60 spins under
uniaxial and hydrostatic compressive stresses from Monte Carlo simulations. From right to
left, for each type of the stress, the stress magnitude increases from |6/Y| = 0.00 to 0.10 in
steps of 0.02. A shift of phase transition point to lower temperatures with increase magnitude
of stresses is evident for (a) 7~ and (b) ¥ respectively. Lines are used for viewing aids.

Table 1. Critical temperatures T, the critical exponents (8/V,yV,1/V) and the dimension 4

obtained from Monte Carlo simulation for uniaxial and hydrostatic compressive stresses.

70.00

4.5121+0.0003

0.509+0.005

1.958+0.007

e

1522+0.017

2.976+0.016

uniaxial

-0.02

4.4833+0.0004

0.507£0.004

1.956%0.008

1.514%0.021

2.96910.015

-0.04

4.3805%0.0002

0.505+0.004

1.960%0.007

1.514+0.015

2.969+0.015

-0.06

4.1680£0.0003

0.505+0.002

1.958+0.008

1.524+0.018

2.96810.012

-0.08

3.7794£0.0003

0.499+0.004

1.956%0.006

1.515+0.015

2.955+0.014

-0.10

3.0437+0.0002

0.504%0.004

1.959+0.004

1.545+0.014

2.966+0.013

Hydro-
static

-0.02

4.4371+0.0002

0.510£0.004

1.972%0.006

1.560%0.009

2.993+0.013

-0.04

4.1645+0.0002

0.508+0.003

1.960£0.004

1.535+0.014

2.976£0.009

-0.06

3.6002+0.0003

0.507%0.004

1.968+0.007

1.524+0.013

2.983+0.014

-0.08

2.6104£0.0002

0.508+0.003

1.968£0.009

1.542+0.021

2.985+0.016

-0.10

1.0046£0.0001

0.505%0.003

1.966£0.006

1.523+0.017

2.97620.011

direction. However, both stresses show that
T reduces with increasing the stresses while

the stress-free results agree well with previous

Monte Carlo investigations on 3D Ising

spins [25]. Note that the reduction in T with
increasing stresses agrees with references
[11,12,15,16] but disagrees with references
[13,14,17]. This could be caused by that, in
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Figure 2. The critical temperatures T, as a function of stresses extracted from Monte Carlo

simulations. The zeto stress results agree well with previous studies [25]. The curves are drawn

from non-linear fits to the data i.e. equation (7).

addition to the exchange interaction, the
stress may induce some shape (directional)
anisotropies which change the ground state
and increase the system Hamiltonian [10].
Therefore, to investigate the increase of T,
with stresses, material and structural
dependence on stresses of the anisotropies
should be also considered.

However, as can be seen in Figure 2, T,
tends to relate to 6/Y in a power law form
Le.

b

TC(%JzTC(O)—ax ;- ) @

where T,(0) refers to stress-free critical

temperature, and 2 and 4 are constants.
Therefore, if the relation as in equation (7)
can be formulated, the knowledge on how
the critical temperature associates to the
stress will be revealed. Nevertheless, a
straightforward non-linear fit does not
function since only a small number of data is

available. Fortunately, as the stress-free T (0)
was known (see Table 1), equation (7) may
change to

log[TC (0)-7 [%jj =loga—blog

o4 ®

wherte zand & can be extracted from the linear
fit of the log-log plot of equation (8). With
the proposed fit, the uniaxial stress gives « =
336.1139 * 88.4584 and b= 2.4137 * 0.0875
with R* = 0.99804, while the hydrostatic stress
gives a= 776.6502 £ 132.2325and 4 = 2.3771
+ 0.0566 with R*> = 0.99915. As a result, with
the known constants (a,b), equation (7) can be
used to draw non-linear relation between T,
and 0/Y as is in Figure 2. The curves seem to
match up with the data except at the highest
0/Y = -0.10 since the error in zis quite large.
Furthermore, it can be seen the both type of
stresses appear to agree in the value of 4 within
error bars. This suggests that the type of stress
may not affect the universality of how the
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magnitude of stresses alters the critical
temperature.

Next, on further verifying the contention
of universality, the critical exponents were
considered since they have been known to
depend only on the system dimension and the
otder parameter, but not on the magnitude
and range of the interaction [28]. Consequently,
the exponents (B/v, y/v and 1/v) were
extracted from the slopes of the log-log plots
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of m, ¥ and dU /d(k,T) against L at T
(according to equations (5,6) and that 4U, /
d(k,T) oc L". Good linear relations were
found from all log-log plots (not shown)
which support the validity of finite size scaling
ansatz for magnetic systems under stresses.
These exponents including the dimension
d = 2B/v+yv are graphically presented in
Figure 3, where both types of stresses agree
on the values. Again, the stress-free results are
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Figure 3. Critical exponents (1/v,f/v, and ¥V) and the dimension 4 for both uniaxial and
hydrostatic compressive stresses. Linear horizontal lines are the values from previous stress-

free investigation [25].

in consistent with the previous investigation
[25] (straight lines). As being evident, types and
magnitude of stresses (as long as the system
is of the same type e.g. ferromagnetic) do not
affect the universality of the magnetic systems.
Furthermore, as the dimension dis close to 3,
this implies that three-dimensional magnetic

behavior is not affected by the structure
deformation.

4. CONCLUSIONS

To conclude, this study proposes Monte
Cartlo simulations to study the three-
dimensional Ising spins under the influence of
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uniaxial and hydrostatic stresses via the
Lennard-Jones type exchange interaction to
observe magnetic properties. The critical
temperature is found to reduce with increasing
the stress magnitude. However, the critical
exponents and the hyperscaling dimension
do not change with types and magnitude of
the stresses which secure the contention of
magnetic universality in compressed magnetic
systems.
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