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Large coupling expansions of eigen energies and wave functions of a harmonic
potential superposed with a general even power have been evaluated. These general expansions
are then applied to harmonic and quartic anharmonic oscillator problems. The results are
found to be in good agreement with those of earlier workers.
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INTRODUCTION

Perturbation theory, although used for
deriving first or second order approximations,
was not generally considered to be giving true
seties solution from which at least analytic
properties could be inferred. In various
investigations Aly et al. [1], MUller- Kirsten
et al.[2-4] and Sharma et al.[5-8] have shown
that this distegard of perturbation method in
potential theory is not justified. Muller-
Kirsten et al. [9] and Sharma et al. [10-11]
have presented a unified picture of a
perturbative treatment for almost any type of
nonsingular interactions-unified in the sense-
that almost all the problems were solved with
one and the same perturbation approach.

Large coupling solutions to various
problems in potential theory and in particle
physics have attracted considerable interest,
particularly in view of the desire to understand
strong interactions of purely field-theoretic
formulations. However, attempts in this
direction were sevetely handicapped due to
the fact that the relevant coupling parameter
is larger by a factor of about 1,000 than the
fine structure constant of quantum

electrodynamics. Since many expansions of
physically relevant quantities currently studied
are asymptotic in nature, there seems to be
no plausible reason of ignoring asymptotic
latge coupling solutions. In fact, some time
ago it has been emphasized by Dingle [12] that
it is precisely the physicist’s approach to a
ptroblem which will commonly lead to
asymptotic rather than convergent expansions.
Large coupling solutions of the Bethe-
Salpeter equation of scalar ¢3 theory have
been studied by Cheng and Wu [13]. ‘Large
coupling solutions of Bethe-Salpeter equation
of the Wick-Cutkoksy model have been
detived [14]. Kaushal [15], using high energy
perturbation theory obtained eigen energy

Ax?
expansion for the interaction (1 2 ) in the
+ gx

range of small values of gand large values
of . Sharma et al. [16] have recently
formulated a perturbation technique for large
coupling constant and used it to obtain the
solutions of a double exponential potential in
the Schrédinger equation. They have also
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shown a possibility that this formulation could
be used for the solution of certain singular
potentials. Bhargava and Sharma [17] have
evaluated eigen energy expansions for a strong
coupling harmonic potential superposed
with weakly coupled linear and cubic
anharmonicities. s e AT
In this paper, we evaluate expansions for
eigen energies in terms of an odd integer
quantum number
g=4n+3(n=0,1,2,3......)
for the potential

V(/’)=—g2r2(l+}tr2”) @
Here gz , the coupling constant is large,
N>0 and A is small.

It is relevant here to point out that at
times it is convenient to express the overall
coupling constant in terms of a parameter
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B defined by

g=|Ble? @

We also.discuss the applications of our
general result in different cases and show in
particular that the results for harmonic
oscillatot with positive quartic anharmonicities
are in agreement with the results of Hioe and
Montroll [18] (Table 1). In Fig. 1 a graph for
the ground and a few of the excited energy
levels of the quartic anharmonic oscillatot, as
a function of the anharmonicity parameter
G, has been plotted. The behaviour of all
the energy levels with respect to the
anharmonicity parameter shows a qualitative
similarity to the ground state of the oscillator.
This observation is in agreement with that of
Biswas et al. [19].

Tablel. Ground state Energy Levels for Quartic Anharmonoc Oscillator for Different

values of G.

0.0001 0.50007 1.50037
0.0005 0.50037 1.50186
0.0007 0.50053 1.50263
0.0009 0.50068 1.50338
0.001 0.50075 1.50375
0.0017 0.50128 150638
0.002 0.50150 1.50750
(0.5014) (1.5074)
0.003 0.50250 1.51120
0.004 0.50300 1.51500
0.005 0.50375 1.51875
0.006 0.50450 1.52200
(0.5044) (1.5218)
0.007 0.50525 1.52625
0.008 0.5060 1.53000
0.009 0.50675 1.53375
001 0.5075 1.53750
(0.5072) (1.5356)
0.02 0.51500 1.57500
0.03 0.52250 1.61250
0.04 0.53000 1.65000
0.05 05375 1.68750
(0.5326) (1.6534)
0.06 0.54500 1.72500
0.07 0.55250 1.76250
0.08 0.5600 1.80000
0.09 0.56750 1.83750
01 0.5750 1.87500
(0.5591) (1.76950)
0.2 0.65000 2.25000
03 0.72500 2.62500

=1 g=l5
2.50097 3.50188
2.50487 3.50938
2.50683 3.51313
2.50878 3.51688
2.50975 3.51875
2.51658 3.53188
2.51950 3.53750
(2.5192)

2.52925 3..55625
2.53900 3.57500
2.54875 3.59375
2.5588 3.61250
(2.5559)

2.56825 3.63125
2.5780 3.65000
2.58775 3.66875
2.5975 3.68750
(2.5908)

2.69500 3.87500
2.79250 4.06250
2.89000 4.25000
2.9875 4.43750
(2.8739)

3.08500 4.62500
3.18250 4.81250
3.2800 5.00000
3.37750 5.18750
3.47500 5.37500
(3.13860)

4.45000 7.25000
5.42500 9.12500

It should be noted that the values given in the parentheses of Table I are from Reference [18].
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2. THEORY
Consider the radial Schrédinger equation

l//’+[k2 —@—V(r)}//(r):‘)

1

h=c=1lm=—
( 2) o
On substituting Eq. (1) in Eq. (3), we get

d*y J{kz _’(’“)—52—}//(2)

dz* | 2ig z? 4

Sl

where
1
z = (2ig)2 r
k*=E G)

We wish to determine the approximate
behavior of eigenenergy k2 under normal
bound state boundary conditions for large
values of . Here we use the perturbation
procedure employed in our previous
investigations [6-8,10-11] .  In the
limit & — °°, Eq. (4) may be approximated
by

Py, ” [k 10+1) 22
0) _
T2 Ve =0 e

where Wq(O)(Z) = D/ (q - 1) is a parabolic

]

2
cylindrical function. The square integrability
of q(o) demands that g be an odd integer,
ie, g=4n+3, with n=0,1,2....... In Eq.

(4) we now set

1
h Tg k= ig2l+q)-20 ()

where A is yet to be determined and < 1.
Substituting Eq. (7) in Eq. (4) we obtain
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which in the lowest order satisfies

©)

satisfies the

©) _
Dy, =0. Now vy,

recurrence relation

(a) = (a, a+ l)ul(a + 1)+ (a,a)l//(a)

Ea
2
+(a,a-1)y(a-1) (10)

where

v, (z)=v(ab,z)=y(a)
with
(@a+1)=a=-1(q-3)
(aa)=b-2a=1+%
(@a-1)=a-b=-V(g+3)-1 a1

In general we write,

) N . L
5| v Es.aarimians
" (12)
where the coefficient S, (a,a + r) satisfies
the following recurrence relation
S (a,a+r)=8, _(a,a+r)a+r-la+ r)
+8, (a,a+r)a+r,a+r)

+8, (aa+r+1)a+r+la+r) 13)
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The lowest order approximation leaves
uncompensated the contribution

JN+2

=p" j\f[a a+j]
= R J

j==(N+2)

R

(0) Ah A N+1 z*
=—+2(h z
1 2 +4() [2

wla+ )

N+1

14

where

A A

[a,a]N —5+ 4SN+1(a,a)

for j=0 (15)

and

. A .
[aaa+J]N+1 =ZSN+2(a’a+])

for j#0 (16)

Now the first order correction to the
wave function is given by

N+2 ;
V’q(l) _ i 2 [a’a+.-]]N+1"r(a+j)
j=—(+2) J
j #0
)

Again, in the first order, the uncom-
pensated terms left are given by

_ i Nz a a+J AT Jlva vy
=N+ J
0
[a+], ]N+1W( ) (18)

The highest order corrections to the eigen

(2),wq(3)

are obtained in a

0

tunctions, i.e. Y,

manner analogous to the detivation of Y/,

Then adding the successive contributions, we
obtain

y/q=1//q) l// u/ ...... (19)

which can be written as
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N2

y,=h"" Y Culaiwla+j) (o
j==(v+2)

where the coefficients C (a, j) follow by

comparison. For Eq. (20) to be the solution
of Eq. (8), the sum of the coefficients of

......... left uncompen-

sated so far must be set equal to zero, i.e.
from Eq. (15) and Eq. (18) etc, for N =1,

we obtain

3 . .
hz[a,a]l +h42[a,a+]]2[a+],a]2 —0
J

=3
7#0

@D
This is the equation which determines A

and hence eigen values . The coefficients

[a, a+ ]] 41 Can now be evaluated with the
help of Egs. (11), (12), (13) and (16).
The values of [ thus determined are

E=k*= ig(21+q)+ %(qz +l)

2&2

" 62884° +1326404° +3084324]

+o(/13) (22)

, Eq. (22) can be written as

=B (21""])‘]“‘%(‘12 +1)
+222 L 62884° +1326404° +308432 4]
+O( 3) (23)

Egs. (20) and (22) which are the main
results of this paper represent the asymptotic
expansions for the large values of g and for

small values of J . The solution of Eq. (22)
is valid forh<1.
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3. APPLICATIONS
3.1 Harmonic Oscillator
The potential in Eq. (1) for
A = 0 takes the form

V(r)=-g*r’
=(ig)r <2“>
Let
V(r)=a’r’
From Eq. (22)
k* =21 +q)ig
Since
qg=4n+3
2
L 25)
2ig 2

From Eq. (25) ground state energy for the
oscillator would be

(20)

The result presented in Eq. (26) agrees
with that of Sharma et al. [20].

3.2 Anharmonic Oscillator

The study of quantum mechanics of
anharmonic oscillator is of considerable
interest both from the physical as well as the
mathematical point of view. The mathematical
analysis of many of the oscillatory systems
which exist in natute leads to the solution of
non-linear differential equations. These
solutions in turn have been quite helpful in
understanding various problems encountered
in quantum field theory and molecular physics.
Precisely for this reason Sharma et al. [21]
detived analytical formulas for the energy

eigenvalues E, ()L) of one-dimensional

anharmonic oscillators characterized by the

2.2, % 2
potential @ X~ + Zlax “ . These energy

o=2
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values, over a wide range of the values of
nand A, agreed well with the numerical

values calculated by earlier workers. Bender
and Wu [22] discussed anharmonic oscillator
with a potential of the form

2 4
x°  Gx
Vir)=—+— 27
r)="+= @)
In our case the equation of anharmonic
oscillator potential is
V(r)=-g’r’ -2g"r" 28)

Compatison of Eq. (27) with Eq. (28),
yields

A=G

and

ig = (29)

1
2

Substituting these values in Eq. (22), gives

k? =(2n+%)+ 3('{2;12 +3n+%j+ O(Gz)

(30)

The tresults presented in Eq. (30) are also
in agreement with those obtained by Bender
and Wu [22]. Further for the one-dimensional
case, Eq. (30) takes the form

En(G)=(n +%J+%G(2n2 +2n+1)+0(G)

=(n+%)+ 4,(G) (1)

where
3
An(G)ZZG for n=0

15
An(G)zqG for n=1

In general,

32)

4 (G)= —%49 [14+2n(n+1)]+ O(Gz) (33)
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Ground state energy levels
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Ground state energy levels for Quartic Anharmonic Oscillator for Different Values of G

10

0.14

Figure 1. A graph for the ground and a few of the excited energy levels of the Quartic
anharmonic oscillator as a function of the anharmonicity parameter G.

The above result is similar to the one

derived by Hioe and Montroll [18].
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