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ABSTRACT
This paper focused on the application of design of experiments to determine optimize
parameters for multilayer-perceptron artificial neural network trained with back-propagation
for modeling purpose. Artificial neural networks (ANNs) for modeling have been widely
used in various fields because of its ability to ‘learn’ from examples. The accuracy of ANN
model depends very much on the setting of network parameters, such as number of neurons,
number of hidden layers and learning rate. Most literatures in this area suggested trial-and-
error method for parameters setting which are time consuming and non economical, whereas
the optimal setting cannot be guaranteed. Consequently, design of experiment techniques is
generally required to optimize various processes. In this paper, as a case study, it was used to
find optimum setting of ANN trained to model ferromagnetic material data. Interested
characteristic was finite-sized ferromagnetic Curie temperature obtained from Monte Carlo
simulation on two dimensional Ising spins. The results indicated that design of experiments is
a promising solution to the mentioned problem. The issues arising from this case were also
discussed.

Keywords: artificial neural netwotks, design of experiments, ferromagnetic materials, curie
temperature.

1. INTRODUCTION

The applications of artificial neural ANNSs’ parameters, such as number of

networks (ANNs) have been reported in
literature in various areas for example,
manufacturing and business [1 - 5]. This is
due to theit ability to learn and generalize from
examples, their robustness, and fault tolerant.
Most literature related to ANNs focused on
specific applications and their results rather
than the methodology of developing and
training the networks. In general, numbers of

hidden node and hidden layer, have to be set
during training process and these setting are
very crucial to the accuracy of ANNs model.
Trial-and-error method is usually used to
determine the approptiate setting of these
patameters.

Design of experiment (DoE) is a
statistical technique widely used to study the
relationship between factors affecting the
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outputs of the process. It can be used to
systematically identify the optimum setting of
factors to obtain the desired output. In this
paper, it was used to find the optimum setting
of ANNS’ parameters in order to achieve
minimum error network. Interested ANNs
parameters were number of neuron in hidden
layers, momentum, and learning rate. A case
study of ferromagnetic materials modeling
was used to illustrate the proposed method.
The results show that DoE can be used to
find better setting of ANNs, which not only
results in minimum error, but also significantly
reduces training time and effort in the
modeling phases.

2. BACKGROUND AND RELEVANT LITERA-
TURES
2.1 Artificial Neural Networks

ANN is by definition “an interconnected
assembly of simple processing elements, units
ot nodes, whose functionality is loosely based
on the animal neuron. The processing ability
of the network is stored in the inter-unit
connection, or weights, obtained by a process
of adaptation to, or learning from, a set of
training patterns” [6]. The ANN can be
‘trained’ to model relationships between input

Input layer

Hidden layers
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and output parameters from examples of the
known inputs and their corresponding
outputs. These input and output are presented
to the network using neurons located in
input and output layers respectively (e.g. see
Figure 1). Neurons are connected where the
strength of connections is indicated by
“weight”. In the training process, a set of
examples of input-output pairs are passed
through the model and the weights are
adjusted in order to minimize error between
the answers from the network and the desired
outputs. This weight alteration procedure is
controlled by the learning algorithm. Learning
algorithm adopted in this study is the
back-propagation algorithm as it is the most
extensively used. In this algorithm, the used

parameters are defined as the following. xEs]

is the current output state of the / neuron in

layer s, w,.[; lis weight on connection joining 7

neuron in layer (s-1) to /* neuron in layer s, [ J[S]
is the weighted summation of inputs to the /*
neuron in layer s, / is learning coefficient,
and Momentum is the momentum coefficient.
Then, the back propagation algorithm is
evaluated via the procedures:

1. An input vector { is fed to the input

Output laver

4™ order cumulant

Figure 1. ANN model of ferromagnetic material.
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layer of the network through the output layer
to obtain an output vector g. At this stage, the
summation of inputs 7 and output x,of each
neuron are also be calculated.

2. For each neuron in the output layer,

the scaled local error e,E”) is calculated from

el = (d, ~0,) f'Uy), @

where the delta weight is calculated from

Aw; e} — =1, e ES] 1 momentum- Aw[ 1@

3. For each layet, the scaled local error
egs] and delta weight are repeatedly evaluated

as
el = 2l .o - £y, Z(e,[:”] My, 3)

4. The delta weights are added to the
previous weights to update all weights in the
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network. Then, the whole process is repeated
until error is smaller than the stopping ctitetia.

2.2 Optimization of ANNs Parameters
Using DoE

Design of experiment was first
developed in the early 1920s by Sir Ronal
Fisher to determine the effect of multiple
factors on the outcome of agricultural trials.
The work of Refs [7, 8] and other statistician
with an interest in this area have provided a
firm foundation for practitioners. Factotial
expetimental design which experimental trials
are performed at all combinations of factor
levels was used in this study.

The applications of DoE techniques to
optimize ANNSs parameter were reported in
literatures [9 - 13]. Factors that often found
to have the significant effect on ANNs
accuracy are number of neurons in hidden
layers, learning rate and momentum as shown

Table 1. Research on NN parameters opurrnzauon

. Apﬁhcanons . ~ Signil s :

91 |Super plastlc forming process modehng lelt Y%of vahdatlon Transfer function

[10] |10 data sets from vatious sources Number of hidden neurons, learning
rate, momentum term

[11] |Wood veneer inspection Learning rate, Number of neuron in
hidden layer 1

[12] |Vibration suppression Number of input, number of training
pattern

[13]  [The selection of manufacturing policies | Input representation, Training sample
size

in Table 1. Therefore, these factors were
carefully chosen to optimize the ANN’s
modeling in this paper.

3. THE CASE STUDY : THE FINITE-SIZE CURIE
TEMPERATURE FROM THE MONTE CARLO
SIMULATION ON TWO DIMENSIONAL ISING
SPINS

3.1 Training Data

In this work, a case study of using ANN's
to model ferromagnetic materials was studied.
The relationships among patameters obtained
from Monte Catlo simulation on ferromag-
netic Ising spins in two dimensions were
investigated. ANN model used in the paper
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is shown in Figure 1. The training data were
obtained from Monte Catlo simulation on two
dimensional Ising spins. The input data were
system size L (where the total number of
spins is N = L. x L) and the simulated
temperature T. The output data was the
fourth order cumulant of the magnetization

U, ie. U, =1-(m*)/(m*) [14], where

m=y S, / N is the average magnetization
per spin and S, = 1 is the Ising spin. At the
critical temperature, U, becomes independent
of L, so for differing sized L and L,

U, 1U,),;. =1 [14]. Nevertheless, owing

to finite size effects, the cumulant curves
obtained for different . do not exactly cross
at a same temperature. Therefore, the critical
temperature is generally estimated from
T,(b=L/L'") at the limit (Inb)" —0 [14].
As a result, to accurately locate the crossing

point whete (U, /U, ), , =1 is not trivial. It

is required to vary lots of simulated
temperatures until the required crossing
condition is satisfied. General numerical
interpolation techniques, e.g. cubic spline or
polynomial interpolations, should be avoided
since they ate very susceptible to errors if the
data is of some uncertainties.

Therefore, it is of interest if there are
other techniques which can be used to help
finding the cumulant crossing at some good
accuracy but do not require much computer
resource. As a result, this work considers the

Table 2. Factors and their levels.

Numbet of neurons in hidden layer 1 (Factor A) 2 10
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use of artificial neural network to interpolate
among cumulant data, obtained from the
Monte Carlo simulations, to find the crossing
point. Each cumulant data point is calculated
from small number of spin configurations,
i.e. 5000 mcs, with varying system sizes L.and
temperatures T. In this work, the system sizes
were vatied from 10 to 50 in steps of 5. The
temperature was varied from 2.0 to 2.5 in
steps of 10° J/#&, to cover the analytic two
dimensional critical temperature of the Ising
model where T = 2.269 /£, [15].

Artificial neural networks were firstly
trained with 250 patterns of the Monte Carlo
data. 75% of these 250 patterns were used
for training and the rest 25% was used for
testing the network performance to prevent
the network from overtraining,

3.2 Experimental Setting

In this paper, the factors that affect the
ANNSs accuracy, which can be measured by
root mean square etror (RMSE), were studied.
Four factors were included in the experiments
as they are factors that often found to be
important as reported in literatures. These
factors and their setting are shown in Table 2.
Two levels of number of neurons in hidden
layer 1 wete tested which are 2 and 10 neurons.
This setting is due to the prior experiments
which results shown that more than 10
neurons does not improve much of the
network accuracy. Reference [11] suggested
that number of neuron in the second layer

Number of neurons in hidden layer 2 (Factor B) 0 6
Learning rate (Factor C) 0.001 0.1
Momentum (Factor D) 0.0 0.8
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Table 3. Experimental settings and results.

Run Order Factor A Factor B Factor C Factor D RMSE
1 10 0 0.1 0 0.0034
2 10 6 0.001 0 0.0205
3 6 0.1 0.8 0.0020
4 0 0.001 0 0.0222
5 6 0.001 0.8 0.0056
6 0 0.1 0 0.0149
7 10 0 0.1 0 0.0030
3 6 0.1 0 0.0053
9 6 0.001 0 0.0242
10 10 0 0.1 0.8 0.2953
11 10 0 0.001 0.8 0.0085
12 0 0.001 0 0.0212
13 6 0.001 0.8 0.0066
14 0 0.1 0.8 0.0146
15 10 6 0.1 0.8 0.0016
16 2 6 0.001 0 0.0063
17 10 0 0.001 0.8 0.0082
18 0 0.1 0 0.0148
19 0 0.001 0.8 0.0209
20 10 0 0.1 0.8 0.2953
21 10 0 0.001 0 0.0192
22 0 0.1 0.8 0.0146
23 0 0.001 0.8 0.0188
24 6 0.1 0 0.0082
25 10 6 0.1 0 0.0029
26 10 6 0.001 0.8 0.0045
27 10 0 0.001 0 0.0224
28 10 6 0.1 0 0.0021
29 2 6 0.1 0.8 0.0041
30 10 6 0.001 0.8 0.0044
31 10 6 0.1 0.8 0.0021
32 10 6 0.001 0 0.0057

should start from 0. This factor was then set 2. Learning rate was set at 0.001 and 0.1,
at 0 neuron for level 1 and 6 neurons forlevel ~ while momentum was set at 0.0 and 0.8.
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Experimental setting was shown in Table 3.
Full factorial design for four factors, namely
2* designs were used, results in 16 experimental
runs. The experiments wete run at two
replicates per each setting. As a result, a total
of 32 runs were conducted. Expetiments
were conducted according to run order. For
example, the first experiment was carried out
at 10 neurons in the first hidden layer, 0 neuron
in the second layer, 0.1 learning rate and
momentum term equals to 0. All 32
experiments were performed according to the
setting and experimental results (RMSE) wete
shown in the last column in Table 3.

3.3 Experimental Results and Discussion

Analysis of variance (ANOVA) was
carried out based on the unseen testing data
at 95% confidence level. The analysis was
prepared by MINITAB software. Table 4 shows
the estimated effects of each parameters and
coefficient for yield. Parameters uses in this
table are the parameters defined in table 2.
The term A*B is the interaction between

Table 4. Estimated effects and coefficients for yield.

=

0.02825
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factors A and B In this analysis, only two-
way interaction was considered.

Each column in table 4 contains
information regarding the determination of
the significant of each term to the response
(RMSE). The first column is the name of
term analyzed. The second column (Effect)
refers to the estimated effects for each factor.
Effect was calculated from Coefx2. ‘Coef’
refers to the estimation of the population
regression coefficients in a regression equation.
‘SE Coef’ is the standard error which refers
to the standard deviation of the estimate of a
regression coefficient. The smaller value
indicates a more precise estimate. As shown
in table 4, the ‘SE Coef” of all terms is small,
which suggest that the data can precisely
estimate the coeffcient’s unknown values. “I°
is the statistical t-value while ‘P’ is the statistical
p-value. The p-value was used to determine
which of the effects are significant. In this
study 95% confidence was used therefore
terms that have p-value lower than 0.05 are
significant. Table 4 showed that all factors and

0.00

37.92

0.000745

Constant

A 0.03093 0.01547 0.000745 20.77 0.00
B -0.0432 -0.0216 0.000745 -29.00 0.00
C 0.02906 0.01453 0.000745 19.51 0.00
D 0.03192 0.01596 0.000745 21.43 0.00
A*B -0.03323 -0.01662 0.000745 -22.31 0.00
A*C 0.03499 0.01749 0.000745 23.49 0.00
A*D 0.03565 0.01783 0.000745 23.93 0.00
B*C -0.03527 -0.01764 0.000745 -23.68 0.00
B*D -0.03746 -0.01873 0.000745 -25.15 0.00
C*D 0.03995 0.01998 0.000745 26.82 0.00
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Main Effects Plot (data means) for RMS error

node in hidden layert
0.05 +

node in_hidden layer2

0.04 - /
0.03 -

N

002 /

0.01

N

2 10

T
o &

leam rate

0.05 -

0.04 /
0.03

Mean of RMS error

/

0.02

~

0.01 -

-

T
0.001

T
0.100

T T
0.0 0.8

a) Main effect plot of RMSE

Interaction Plot (data means) for RMS error rode
L] o 0001 0.100 0.0 0.8 hidden
" a s foos hvu‘;
node in hidden layer1 \\ P g s0a |~ 10
. B K X
Lh‘_hnl‘ - 0.00

node in hidden layer2

| 0.08 node

in

L hidden

004 layer2

ey R — o

0.00
. 008 |- B - &
£
s
learn rate P 0.08

/ lean rate
. —+— 0001
000 g . 0400

nonventun

b) Interaction plot of RMSE

Figure 2. Main effect and interaction plot.

their interactions are significant. The result
is consistent with the result reported in [10].
The effect of these factors ate shown in
Figure 2.

Figure 2a) shows the main effect plots
of RMSE. The figure indicates that number
of neurons in hidden layer 1 at low level
(2 neurons) results in lower RMSE. On the
other hand, number of neurons in hidden
layer 2 at high level (6 neurons) has a better
result. Learning rate and momentum terms
atlower level (0.001 and 0.0 respectively) result
in best accuracy. However, as indicated in
Table 4, all interactions among parametets are
significant. Therefore, the best setting can not
be determined from the main effect plot and

the interaction plot (Figure 2b) has to be taken
into account.

Figure 2b) shows the two-factor inter-
action plots among parameters. For example,
the top left subfigure shows the interaction
between number of neuron in hidden layer 1
(Factor A) and number of neuron in hidden
layer 2 (Factor B). As factor A and B has two
levels each (low and high), the average over
all momentum term and learning rate were
calculated and plotted for the four possible
combinations of A and B levels (i.e. (High A,
High B), (High A, Low B), (Low A, High B)
and (Low A, Low B)). This plot shows that
the effect of the number of neurons in layer
2 on the average RMSE is small when the
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number of neurons in hidden layer 1 is at low
level. As can be seen, Figure 2b) is very useful
in interpreting significant interaction.
Howevert, it should not be used as the only
mean to find the best setting of factors as the
interpretation is subjective. As a result, in this
study, the best setting of factors were
determine from the setting that provide lowest
average RMSE (Table 3) and the best setting
in this case was 10 neurons in the first hidden
layet, 6 neurons in the second layer, 0.1 learning
rate and 0.8 momentum term.

The results from the optimized network
can be used to calculate Curie temperature
based on the given cumulant data. The
extensive of the prediction are given in Ref
[16], where accurate Curie temperature is
obtained which strongly confirms the
functionality the ANNs in providing a
successful alternative approach in modeling
ferromagnetic Curie temperature.

4. CONCLUSIONS AND SUGGESTIONS

This paper has described techniques for
the training of ANNs by using DoE. The
result from the case study of the modeling of
ferromagnetic materials property suggested
that DoE approach could be successfully
used to optimize back-propagation ANNs
parameters. The factors that are found to be
significant in the case study were number of
hidden neurons in hidden layer 1 and 2,
learning rate and momentum term. However,
in the authors’ opinion, the optimum setting
of ANNS parameters are largely problem-
dependent. Ideally and optimization process
should be performed for each ANNs
application, as the significant factors might be
different for ANNs trained for different
purpose.
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