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ABSTRACT
 In this paper, we propose and study a transmission model among individuals in a hospital of  

antibiotic-resistant bacteria considering dysbiosis. The transmission of  such bacteria in a hospital setting 
has been the focus of  several previous researches. However, the aspect and contribution of  antibiotic-
induced dysbiosis was not considered in the existing literature. Antibiotics impact the human intestinal 
microbiome for it unintentionally affects the needed gut microbiota diversity which are fundamental 
drivers of  health and disease in humans. This unintentional destabilization of  the healthy human 
microbiome results in microbial imbalance called dysbiosis. The goal of  this paper is to analyze the 
dynamics of  the proposed model in order to come up with insights and possible strategies to control 
antibiotic-resistant bacterial transmission among individuals in a hospital considering dysbiosis. Possible 
equilibria of  the model system include the resistance-free equilibrium and the endemic equilibrium. 
The stability of  the former means that the antibiotic resistance dies out, while the stability of  the 
latter implies that the antibiotic resistance persists. We determined using sensitivity analysis that the 
most infl uential parameter is the drug 1 treatment rate. Moreover, we found a threshold value for this 
parameter, using numerical continuation, where the antibiotic resistance persists. These results provide 
insights on how to strategize to control the transmission of  antibiotic-resistant bacteria in this setting.
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1. INTRODUCTION 
The development of  antibiotics saved people 

from infections which were previously incurable. 
One of  the most common effects of  antibiotic 
treatment is enhanced bacterial expression of  
antibiotic resistance genes [1]. Antibiotic resistance 
is presently one of  the growing global health threats, 
specifi cally to effective prevention and treatment 
of  infections due to antibiotic-resistant bacteria [1]. 
Antibiotic resistance takes place more frequently 
in hospitals. This is because of  the growing need 
of  the health care sector for antibiotics prescribed 

for the increasing number of  patients and other 
procedures done in a hospital.

In [2], a study of  the transmission of  
antibiotic-resistant bacteria among individuals 
within a hospital was carried out. The model 
that they studied concerns two strains of  a single 
bacterial species with two antimicrobial agents. 
To differentiate the antimicrobial agents, we will 
refer to them as drug 1 and drug 2. Bacteria are 
categorized to be either sensitive or resistant to drug 
1 treatment. Moreover, both strains are sensitive to 
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treatment using drug 2. Individuals are partitioned 
into those that are free from the bacterial strains 
(X), and those that carry the bacterial strains. The 
latter group is further subdivided depending if  
the bacterial strain they carry is resistant (R) or 
sensitive (S) to treatment using drug 1. Here, it 
is assumed that X + S + R = 1.

Figure 1 shows the fl ow of  transmission between 
groups of  individuals in a hospital as studied in 
[2]. The parameters τ1 and τ2 are, respectively, the 
drug 1 and the drug 2 per-capita treatment rates. 
Patients are being admitted and discharged in the 
hospital at a rate μ. Note that β is the per-capita 
colonization or primary transmission rate, while m
is the proportion of  admitted individuals already 
carrying bacteria that are sensitive to drug 1. The 
per-capita immune-response induced bacteria 
clearance rate is the parameter γ, and σ is the 
secondary colonization rate relative to that of  
the primary colonization. It is also assumed that 
a bacterial strain resistant to treatment using drug 
1 has fi tness cost represented by the parameter c.  
Table 1 provides a summary of  these parameters, 
their description, and range of  values from [2].

In terms of  equations, the transmission 
dynamics depicted in Figure 1 yields the following 
system 

dS/dt  
=  mμ + βSX − (τ1 + τ2 + γ + μ)S + σβSR   
    − σβ(1 − c)SR,

dR/dt  
=  β(1 − c)RX − (μ + τ2 + γ)R −σβSR 
    + σβ(1 − c)SR,

dX/dt  
=  (1 − m)μ + (τ1 + τ2 + γ)S + (τ2 + γ)R
     − βSX − β(1 − c)RX − μX.              (1)

Since X + S + R = 1, the dynamics of  this system 
can be studied using just the fi rst two equations 
with X replaced by 1 − S − R. 

Antibiotics impact the human intestinal 
microbiome of  the host for it unintentionally 
affects the needed gut microbiota diversity [3]. 
The gut microbiota is considered an ”essential 
organ” that contains bacterial species which are 

Figure 1. The compartmental model studied in [2] of  bacterial transmission dynamics in a hospital 
among individuals S (carrying sensitive strain), R (carrying resistant stain) and X (uncolonized individuals).
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Table 1. Description and range of  values of  the parameters in the system (1).

Parameter Description Range 

µ Per-capita patient turnover rate > 0

β Per-capita primary transmission rate (colonization) > 0

τ1 Per-capita treatment rate of  drug 1 ≥ 0

τ2 Per-capita treatment rate of  drug 2 ≥ 0

γ Per-capita clearance rate of  bacteria due to immune response > 0

σ Relative rate of  secondary colonization to that of  the primary colonization [0, 1]

m Proportion of  admitted individual already colonized with sensitive bacteria [0, 1]

c Fitness cost of  a bacterial strain resistant to drug 1 [0, 1)

fundamental drivers of  health and disease in 
humans, facilitating digestion, metabolism, and 
protection against pathogenic microbes, as well 
as immune system and inflammatory problems 
[4]. Since antibiotic treatment affects a person’s 
microbiome compositions, there is a need to 
understand the mechanisms underlying the gut 
microbiota’s wide range of  roles in human health 
since it is crucial in resisting pathogen colonization 
and in the host immune system’s maturation [5]. 

When prescribed appropriately, antibiotics 
target pathogenic bacteria during infectious 
periods. However, most administered antibiotics 
expose a wide range of  gut microbes which are not 
pathogenic [6]. This unintentional destabilization of  
a healthy human microbiome results in microbial 
imbalance called dysbiosis. Antibiotic-induced 
dysbiosis decreases the diversity of  bacteria in the 
microbiota which indicates “weaker microbiome” 
and is a common feature of  a disease state [7]. 
Reduced abundance and diversity of  healthy 
microbial communities impair immune responses 
of  the host and result in reduction in resisting 
colonization. Consequently, the host becomes 
more susceptible to colonization of  antibiotic-
resistant bacteria [8].

Our proposed model generalizes the model 
given in the system (1) by incorporating the role 
of  dysbiosis. The model is adapted where there is 
an ecological competition between gut microbiota 

within the host and bacterial pathogens disrupted 
by the antibiotic-induced dysbiosis, causing 
colonization between host to pathogen similar 
to the approach taken in [9]. Competition for 
limited resources within the host, e.g. on space 
nutrients, happens due to co-colonizing bacteria. 
This causes the reduction of  potential competitors 
due to antibiotics that may favor the pathogen 
persistence. We consider the reduced rate of  
pathogen clearance γ due to immune response 
among individuals. That is, we have γη = γ(1−η) 
as the new immune response of  hosts undergoing 
dysbiosis, where η  is the resource competition. We 
assume that interactions between microbiome and 
pathogen are species specifics. In that case, η and 
the relative rate of  antibiotics induce dysbiosis, 
denoted by 

are carrying resistant strain undergoing dysbiosis Rd. The relationship between these two host types is

called antibiotic-induced dysbiosis and the rate 𝜙𝜙 = a𝜃𝜃, where a is the prevalence of antibiotic

exposure and 𝜃𝜃 is the rate at which antibiotic exposure will induce dysbiosis. Meanwhile, we also

assume that the microbiome recovers at a rate 𝛿𝛿. The proportions of admitted individuals that are

already colonized with sensitive bacteria and with a microbiome undergoing dysbiosis and those with

a balanced microbiome are given, respectively, by A2 and A1, while the proportion of admitted

uncolonized with a microbiome undergoing dysbiosis is given by A3. Table 2 provides a summary of

the additional parameters introduced in the proposed model. The range of values for these parameters

are taken from [9].

The system of equations describing the bacterial transmission in a hospital among individuals as

illustrated in Figure 2 is given below

dSe /dt =  𝜇𝜇A1 + 𝛽𝛽SeXe − 𝜅𝜅Se + 𝜎𝜎𝛽𝛽SeRe − 𝜎𝜎𝛽𝛽(1 − c)SeRe + 𝛿𝛿Sd − 𝜙𝜙Se − 𝜇𝜇Se ,

dSd /dt =  𝜇𝜇A2 + 𝛽𝛽SdXd − 𝜈𝜈Sd + 𝜎𝜎𝛽𝛽SdRd − 𝜎𝜎𝛽𝛽(1 − c)SdRd − 𝛿𝛿Sd + 𝜙𝜙Se − 𝜇𝜇Sd ,

dRe /dt =  𝛽𝛽(1 − c)ReXe − (𝜏𝜏2 + 𝛾𝛾)Re + 𝜎𝜎𝛽𝛽(1 − c)SeRe − 𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Rd − 𝜙𝜙Re − 𝜇𝜇Re ,

dRd /dt =  𝛽𝛽(1 − c)RdXd − (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd + 𝜎𝜎𝛽𝛽(1 − c)SdRd − 𝜎𝜎𝛽𝛽SdRd − 𝛿𝛿Rd + 𝜙𝜙Re − 𝜇𝜇Rd ,

dXd /dt =  𝜇𝜇A3 + 𝜈𝜈Sd − 𝛽𝛽SdXd − 𝛽𝛽(1 − c)RdXd + (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd − 𝛿𝛿Xd + 𝜙𝜙Xe − 𝜇𝜇Xd ,

dXe /dt =  𝜇𝜇(1 − A1 − A2 − A3) − 𝛽𝛽(1 − c)ReXe + (𝜏𝜏2 + 𝛾𝛾)Re − 𝛽𝛽SeXe + 𝜅𝜅Se + 𝛿𝛿Xd − 𝜙𝜙Xe − 𝜇𝜇Xe ,

(2)

where 𝜅𝜅 = 𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾 and 𝜈𝜈 = 𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾𝜂𝜂. Similar to the system (1), the dynamics of the system (2) can

be studied using the reduced system composed of the first 5 equations of the system (2) with Xe

replaced by 1 − Se − Sd − Re − Rd − Xd. This reduced system is given as follows

dSe /dt =  𝜇𝜇A1 + 𝛽𝛽Se(1 − Se − Sd − Re − Rd − Xd) − pSe + c𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Sd ,

dSd /dt =  𝜇𝜇A2 + 𝛽𝛽SdXd − (𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾𝜂𝜂 + 𝛿𝛿 + 𝜇𝜇)Sd + c𝜎𝜎𝛽𝛽SdRd + 𝜙𝜙Se ,

dRe /dt =  𝛽𝛽(1 − c)Re(1 − Se − Sd − Re − Rd − Xd) − (𝜏𝜏2 + 𝛾𝛾 + 𝜙𝜙 + 𝜇𝜇)Re − c𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Rd ,

dRd /dt =  𝛽𝛽(1 − c)RdXd − (𝜏𝜏2 + 𝛾𝛾𝜂𝜂 + 𝛿𝛿 + 𝜇𝜇)Rd − c𝜎𝜎𝛽𝛽SdRd + 𝜙𝜙Re ,

dXd /dt =  𝜇𝜇A3 + qSd − 𝛽𝛽SdXd − 𝛽𝛽(1 − c)RdXd + (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd − sXd + 𝜙𝜙(1 − Se − Re − Rd) ,

(3)

, are equally distributed [9]. Here, 
we still assume that the uncolonized individuals 
and the individuals carrying sensitive strains of  
bacteria can be treated with both drugs, while 
individuals carrying bacteria that are of  resistant 
strains can only be treated with drug 2 since it is 
already resistant to drug 1.

Shown in Figure 2 is the proposed compartmental 
model that reflects the transmission flow of  a 
single bacterial species within the hospital setting 
among the individuals considering dysbiosis. Similar 
to the previous model given in the system (1), 
this proposed model considers a single bacterial 
species with two different strains and with two 
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Figure 2. The proposed compartmental model that refl ects the transmission fl ow of  a single bacterial 
species within the hospital setting among individuals Se (carrying sensitive strain with balanced microbiome), 
Sd (carrying sensitive strain undergoing dysbiosis), Xe (uncolonized with balanced microbiome), Xd 

(uncolonized undergoing dysbiosis), Re (carrying resistant strain with balanced microbiome), and Rd 

(carrying resistant strain undergoing dysbiosis).

antimicrobial agents. Likewise, individuals are 
partitioned depending on the strain of  bacteria they 
carry. That is, individuals possibly carry bacterial 
strains that are either resistant (R) or sensitive 
(S) to treatment using drug 1, or individuals do 
not carry these bacteria (X). However, in our 
proposed model, we consider two host types 
for a single pathogen. Those with subscript e 
are the proportion of  individuals with balanced 
microbiome while those with subscript d are the 
proportion of  individuals undergoing dysbiosis. That 
is, individuals within the hospital are partitioned 
into individuals who are carrying sensitive strain 
with balanced microbiome Se, individuals who are 
carrying sensitive strain undergoing dysbiosis Sd, 

individuals who are uncolonized with balanced 
microbiome Xe, individuals who are uncolonized 
undergoing dysbiosis Xd, individuals who are 
carrying resistant strain with balanced microbiome 
Re, and individuals who are carrying resistant 
strain undergoing dysbiosis Rd. The relationship 
between these two host types is called antibiotic-
induced dysbiosis and the rate 

are carrying resistant strain undergoing dysbiosis Rd. The relationship between these two host types is

called antibiotic-induced dysbiosis and the rate 𝜙𝜙 = a𝜃𝜃, where a is the prevalence of antibiotic

exposure and 𝜃𝜃 is the rate at which antibiotic exposure will induce dysbiosis. Meanwhile, we also

assume that the microbiome recovers at a rate 𝛿𝛿. The proportions of admitted individuals that are

already colonized with sensitive bacteria and with a microbiome undergoing dysbiosis and those with

a balanced microbiome are given, respectively, by A2 and A1, while the proportion of admitted

uncolonized with a microbiome undergoing dysbiosis is given by A3. Table 2 provides a summary of

the additional parameters introduced in the proposed model. The range of values for these parameters

are taken from [9].

The system of equations describing the bacterial transmission in a hospital among individuals as

illustrated in Figure 2 is given below

dSe /dt =  𝜇𝜇A1 + 𝛽𝛽SeXe − 𝜅𝜅Se + 𝜎𝜎𝛽𝛽SeRe − 𝜎𝜎𝛽𝛽(1 − c)SeRe + 𝛿𝛿Sd − 𝜙𝜙Se − 𝜇𝜇Se ,

dSd /dt =  𝜇𝜇A2 + 𝛽𝛽SdXd − 𝜈𝜈Sd + 𝜎𝜎𝛽𝛽SdRd − 𝜎𝜎𝛽𝛽(1 − c)SdRd − 𝛿𝛿Sd + 𝜙𝜙Se − 𝜇𝜇Sd ,

dRe /dt =  𝛽𝛽(1 − c)ReXe − (𝜏𝜏2 + 𝛾𝛾)Re + 𝜎𝜎𝛽𝛽(1 − c)SeRe − 𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Rd − 𝜙𝜙Re − 𝜇𝜇Re ,

dRd /dt =  𝛽𝛽(1 − c)RdXd − (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd + 𝜎𝜎𝛽𝛽(1 − c)SdRd − 𝜎𝜎𝛽𝛽SdRd − 𝛿𝛿Rd + 𝜙𝜙Re − 𝜇𝜇Rd ,

dXd /dt =  𝜇𝜇A3 + 𝜈𝜈Sd − 𝛽𝛽SdXd − 𝛽𝛽(1 − c)RdXd + (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd − 𝛿𝛿Xd + 𝜙𝜙Xe − 𝜇𝜇Xd ,

dXe /dt =  𝜇𝜇(1 − A1 − A2 − A3) − 𝛽𝛽(1 − c)ReXe + (𝜏𝜏2 + 𝛾𝛾)Re − 𝛽𝛽SeXe + 𝜅𝜅Se + 𝛿𝛿Xd − 𝜙𝜙Xe − 𝜇𝜇Xe ,

(2)

where 𝜅𝜅 = 𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾 and 𝜈𝜈 = 𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾𝜂𝜂. Similar to the system (1), the dynamics of the system (2) can

be studied using the reduced system composed of the first 5 equations of the system (2) with Xe

replaced by 1 − Se − Sd − Re − Rd − Xd. This reduced system is given as follows

dSe /dt =  𝜇𝜇A1 + 𝛽𝛽Se(1 − Se − Sd − Re − Rd − Xd) − pSe + c𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Sd ,

dSd /dt =  𝜇𝜇A2 + 𝛽𝛽SdXd − (𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾𝜂𝜂 + 𝛿𝛿 + 𝜇𝜇)Sd + c𝜎𝜎𝛽𝛽SdRd + 𝜙𝜙Se ,

dRe /dt =  𝛽𝛽(1 − c)Re(1 − Se − Sd − Re − Rd − Xd) − (𝜏𝜏2 + 𝛾𝛾 + 𝜙𝜙 + 𝜇𝜇)Re − c𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Rd ,

dRd /dt =  𝛽𝛽(1 − c)RdXd − (𝜏𝜏2 + 𝛾𝛾𝜂𝜂 + 𝛿𝛿 + 𝜇𝜇)Rd − c𝜎𝜎𝛽𝛽SdRd + 𝜙𝜙Re ,

dXd /dt =  𝜇𝜇A3 + qSd − 𝛽𝛽SdXd − 𝛽𝛽(1 − c)RdXd + (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd − sXd + 𝜙𝜙(1 − Se − Re − Rd) ,

(3)

 = aθ, where a 
is the prevalence of  antibiotic exposure and θ is 
the rate at which antibiotic exposure will induce 
dysbiosis. Meanwhile, we also assume that the 
microbiome recovers at a rate δ. The proportions 
of  admitted individuals that are already colonized 
with sensitive bacteria and with a microbiome 
undergoing dysbiosis and those with a balanced 
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microbiome are given, respectively, by A2 and A1, 
while the proportion of  admitted uncolonized 
with a microbiome undergoing dysbiosis is 
given by A3. Table 2 provides a summary of  the 
additional parameters introduced in the proposed 
model. The range of  values for these parameters 
are taken from [9].

The system of  equations describing the bacterial 
transmission in a hospital among individuals as 
illustrated in Figure 2 is given below

are carrying resistant strain undergoing dysbiosis Rd. The relationship between these two host types is

called antibiotic-induced dysbiosis and the rate 𝜙𝜙 = a𝜃𝜃, where a is the prevalence of antibiotic

exposure and 𝜃𝜃 is the rate at which antibiotic exposure will induce dysbiosis. Meanwhile, we also

assume that the microbiome recovers at a rate 𝛿𝛿. The proportions of admitted individuals that are

already colonized with sensitive bacteria and with a microbiome undergoing dysbiosis and those with

a balanced microbiome are given, respectively, by A2 and A1, while the proportion of admitted

uncolonized with a microbiome undergoing dysbiosis is given by A3. Table 2 provides a summary of

the additional parameters introduced in the proposed model. The range of values for these parameters

are taken from [9].

The system of equations describing the bacterial transmission in a hospital among individuals as

illustrated in Figure 2 is given below

dSe /dt =  𝜇𝜇A1 + 𝛽𝛽SeXe − 𝜅𝜅Se + 𝜎𝜎𝛽𝛽SeRe − 𝜎𝜎𝛽𝛽(1 − c)SeRe + 𝛿𝛿Sd − 𝜙𝜙Se − 𝜇𝜇Se ,

dSd /dt =  𝜇𝜇A2 + 𝛽𝛽SdXd − 𝜈𝜈Sd + 𝜎𝜎𝛽𝛽SdRd − 𝜎𝜎𝛽𝛽(1 − c)SdRd − 𝛿𝛿Sd + 𝜙𝜙Se − 𝜇𝜇Sd ,

dRe /dt =  𝛽𝛽(1 − c)ReXe − (𝜏𝜏2 + 𝛾𝛾)Re + 𝜎𝜎𝛽𝛽(1 − c)SeRe − 𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Rd − 𝜙𝜙Re − 𝜇𝜇Re ,

dRd /dt =  𝛽𝛽(1 − c)RdXd − (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd + 𝜎𝜎𝛽𝛽(1 − c)SdRd − 𝜎𝜎𝛽𝛽SdRd − 𝛿𝛿Rd + 𝜙𝜙Re − 𝜇𝜇Rd ,

dXd /dt =  𝜇𝜇A3 + 𝜈𝜈Sd − 𝛽𝛽SdXd − 𝛽𝛽(1 − c)RdXd + (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd − 𝛿𝛿Xd + 𝜙𝜙Xe − 𝜇𝜇Xd ,

dXe /dt =  𝜇𝜇(1 − A1 − A2 − A3) − 𝛽𝛽(1 − c)ReXe + (𝜏𝜏2 + 𝛾𝛾)Re − 𝛽𝛽SeXe + 𝜅𝜅Se + 𝛿𝛿Xd − 𝜙𝜙Xe − 𝜇𝜇Xe ,

(2)

where 𝜅𝜅 = 𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾 and 𝜈𝜈 = 𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾𝜂𝜂. Similar to the system (1), the dynamics of the system (2) can

be studied using the reduced system composed of the first 5 equations of the system (2) with Xe

replaced by 1 − Se − Sd − Re − Rd − Xd. This reduced system is given as follows

dSe /dt =  𝜇𝜇A1 + 𝛽𝛽Se(1 − Se − Sd − Re − Rd − Xd) − pSe + c𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Sd ,

dSd /dt =  𝜇𝜇A2 + 𝛽𝛽SdXd − (𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾𝜂𝜂 + 𝛿𝛿 + 𝜇𝜇)Sd + c𝜎𝜎𝛽𝛽SdRd + 𝜙𝜙Se ,

dRe /dt =  𝛽𝛽(1 − c)Re(1 − Se − Sd − Re − Rd − Xd) − (𝜏𝜏2 + 𝛾𝛾 + 𝜙𝜙 + 𝜇𝜇)Re − c𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Rd ,

dRd /dt =  𝛽𝛽(1 − c)RdXd − (𝜏𝜏2 + 𝛾𝛾𝜂𝜂 + 𝛿𝛿 + 𝜇𝜇)Rd − c𝜎𝜎𝛽𝛽SdRd + 𝜙𝜙Re ,

dXd /dt =  𝜇𝜇A3 + qSd − 𝛽𝛽SdXd − 𝛽𝛽(1 − c)RdXd + (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd − sXd + 𝜙𝜙(1 − Se − Re − Rd) ,

(3)

are carrying resistant strain undergoing dysbiosis Rd. The relationship between these two host types is

called antibiotic-induced dysbiosis and the rate 𝜙𝜙 = a𝜃𝜃, where a is the prevalence of antibiotic

exposure and 𝜃𝜃 is the rate at which antibiotic exposure will induce dysbiosis. Meanwhile, we also

assume that the microbiome recovers at a rate 𝛿𝛿. The proportions of admitted individuals that are

already colonized with sensitive bacteria and with a microbiome undergoing dysbiosis and those with

a balanced microbiome are given, respectively, by A2 and A1, while the proportion of admitted

uncolonized with a microbiome undergoing dysbiosis is given by A3. Table 2 provides a summary of

the additional parameters introduced in the proposed model. The range of values for these parameters

are taken from [9].

The system of equations describing the bacterial transmission in a hospital among individuals as

illustrated in Figure 2 is given below

dSe /dt =  𝜇𝜇A1 + 𝛽𝛽SeXe − 𝜅𝜅Se + 𝜎𝜎𝛽𝛽SeRe − 𝜎𝜎𝛽𝛽(1 − c)SeRe + 𝛿𝛿Sd − 𝜙𝜙Se − 𝜇𝜇Se ,

dSd /dt =  𝜇𝜇A2 + 𝛽𝛽SdXd − 𝜈𝜈Sd + 𝜎𝜎𝛽𝛽SdRd − 𝜎𝜎𝛽𝛽(1 − c)SdRd − 𝛿𝛿Sd + 𝜙𝜙Se − 𝜇𝜇Sd ,

dRe /dt =  𝛽𝛽(1 − c)ReXe − (𝜏𝜏2 + 𝛾𝛾)Re + 𝜎𝜎𝛽𝛽(1 − c)SeRe − 𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Rd − 𝜙𝜙Re − 𝜇𝜇Re ,

dRd /dt =  𝛽𝛽(1 − c)RdXd − (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd + 𝜎𝜎𝛽𝛽(1 − c)SdRd − 𝜎𝜎𝛽𝛽SdRd − 𝛿𝛿Rd + 𝜙𝜙Re − 𝜇𝜇Rd ,

dXd /dt =  𝜇𝜇A3 + 𝜈𝜈Sd − 𝛽𝛽SdXd − 𝛽𝛽(1 − c)RdXd + (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd − 𝛿𝛿Xd + 𝜙𝜙Xe − 𝜇𝜇Xd ,

dXe /dt =  𝜇𝜇(1 − A1 − A2 − A3) − 𝛽𝛽(1 − c)ReXe + (𝜏𝜏2 + 𝛾𝛾)Re − 𝛽𝛽SeXe + 𝜅𝜅Se + 𝛿𝛿Xd − 𝜙𝜙Xe − 𝜇𝜇Xe ,

(2)

where 𝜅𝜅 = 𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾 and 𝜈𝜈 = 𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾𝜂𝜂. Similar to the system (1), the dynamics of the system (2) can

be studied using the reduced system composed of the first 5 equations of the system (2) with Xe

replaced by 1 − Se − Sd − Re − Rd − Xd. This reduced system is given as follows

dSe /dt =  𝜇𝜇A1 + 𝛽𝛽Se(1 − Se − Sd − Re − Rd − Xd) − pSe + c𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Sd ,

dSd /dt =  𝜇𝜇A2 + 𝛽𝛽SdXd − (𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾𝜂𝜂 + 𝛿𝛿 + 𝜇𝜇)Sd + c𝜎𝜎𝛽𝛽SdRd + 𝜙𝜙Se ,

dRe /dt =  𝛽𝛽(1 − c)Re(1 − Se − Sd − Re − Rd − Xd) − (𝜏𝜏2 + 𝛾𝛾 + 𝜙𝜙 + 𝜇𝜇)Re − c𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Rd ,

dRd /dt =  𝛽𝛽(1 − c)RdXd − (𝜏𝜏2 + 𝛾𝛾𝜂𝜂 + 𝛿𝛿 + 𝜇𝜇)Rd − c𝜎𝜎𝛽𝛽SdRd + 𝜙𝜙Re ,

dXd /dt =  𝜇𝜇A3 + qSd − 𝛽𝛽SdXd − 𝛽𝛽(1 − c)RdXd + (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd − sXd + 𝜙𝜙(1 − Se − Re − Rd) ,

(3)

are carrying resistant strain undergoing dysbiosis Rd. The relationship between these two host types is

called antibiotic-induced dysbiosis and the rate 𝜙𝜙 = a𝜃𝜃, where a is the prevalence of antibiotic

exposure and 𝜃𝜃 is the rate at which antibiotic exposure will induce dysbiosis. Meanwhile, we also

assume that the microbiome recovers at a rate 𝛿𝛿. The proportions of admitted individuals that are

already colonized with sensitive bacteria and with a microbiome undergoing dysbiosis and those with

a balanced microbiome are given, respectively, by A2 and A1, while the proportion of admitted

uncolonized with a microbiome undergoing dysbiosis is given by A3. Table 2 provides a summary of

the additional parameters introduced in the proposed model. The range of values for these parameters

are taken from [9].

The system of equations describing the bacterial transmission in a hospital among individuals as

illustrated in Figure 2 is given below

dSe /dt =  𝜇𝜇A1 + 𝛽𝛽SeXe − 𝜅𝜅Se + 𝜎𝜎𝛽𝛽SeRe − 𝜎𝜎𝛽𝛽(1 − c)SeRe + 𝛿𝛿Sd − 𝜙𝜙Se − 𝜇𝜇Se ,

dSd /dt =  𝜇𝜇A2 + 𝛽𝛽SdXd − 𝜈𝜈Sd + 𝜎𝜎𝛽𝛽SdRd − 𝜎𝜎𝛽𝛽(1 − c)SdRd − 𝛿𝛿Sd + 𝜙𝜙Se − 𝜇𝜇Sd ,

dRe /dt =  𝛽𝛽(1 − c)ReXe − (𝜏𝜏2 + 𝛾𝛾)Re + 𝜎𝜎𝛽𝛽(1 − c)SeRe − 𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Rd − 𝜙𝜙Re − 𝜇𝜇Re ,

dRd /dt =  𝛽𝛽(1 − c)RdXd − (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd + 𝜎𝜎𝛽𝛽(1 − c)SdRd − 𝜎𝜎𝛽𝛽SdRd − 𝛿𝛿Rd + 𝜙𝜙Re − 𝜇𝜇Rd ,

dXd /dt =  𝜇𝜇A3 + 𝜈𝜈Sd − 𝛽𝛽SdXd − 𝛽𝛽(1 − c)RdXd + (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd − 𝛿𝛿Xd + 𝜙𝜙Xe − 𝜇𝜇Xd ,

dXe /dt =  𝜇𝜇(1 − A1 − A2 − A3) − 𝛽𝛽(1 − c)ReXe + (𝜏𝜏2 + 𝛾𝛾)Re − 𝛽𝛽SeXe + 𝜅𝜅Se + 𝛿𝛿Xd − 𝜙𝜙Xe − 𝜇𝜇Xe ,

(2)

where 𝜅𝜅 = 𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾 and 𝜈𝜈 = 𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾𝜂𝜂. Similar to the system (1), the dynamics of the system (2) can

be studied using the reduced system composed of the first 5 equations of the system (2) with Xe

replaced by 1 − Se − Sd − Re − Rd − Xd. This reduced system is given as follows

dSe /dt =  𝜇𝜇A1 + 𝛽𝛽Se(1 − Se − Sd − Re − Rd − Xd) − pSe + c𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Sd ,

dSd /dt =  𝜇𝜇A2 + 𝛽𝛽SdXd − (𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾𝜂𝜂 + 𝛿𝛿 + 𝜇𝜇)Sd + c𝜎𝜎𝛽𝛽SdRd + 𝜙𝜙Se ,

dRe /dt =  𝛽𝛽(1 − c)Re(1 − Se − Sd − Re − Rd − Xd) − (𝜏𝜏2 + 𝛾𝛾 + 𝜙𝜙 + 𝜇𝜇)Re − c𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Rd ,

dRd /dt =  𝛽𝛽(1 − c)RdXd − (𝜏𝜏2 + 𝛾𝛾𝜂𝜂 + 𝛿𝛿 + 𝜇𝜇)Rd − c𝜎𝜎𝛽𝛽SdRd + 𝜙𝜙Re ,

dXd /dt =  𝜇𝜇A3 + qSd − 𝛽𝛽SdXd − 𝛽𝛽(1 − c)RdXd + (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd − sXd + 𝜙𝜙(1 − Se − Re − Rd) ,

(3)

are carrying resistant strain undergoing dysbiosis Rd. The relationship between these two host types is

called antibiotic-induced dysbiosis and the rate 𝜙𝜙 = a𝜃𝜃, where a is the prevalence of antibiotic

exposure and 𝜃𝜃 is the rate at which antibiotic exposure will induce dysbiosis. Meanwhile, we also

assume that the microbiome recovers at a rate 𝛿𝛿. The proportions of admitted individuals that are

already colonized with sensitive bacteria and with a microbiome undergoing dysbiosis and those with

a balanced microbiome are given, respectively, by A2 and A1, while the proportion of admitted

uncolonized with a microbiome undergoing dysbiosis is given by A3. Table 2 provides a summary of

the additional parameters introduced in the proposed model. The range of values for these parameters

are taken from [9].

The system of equations describing the bacterial transmission in a hospital among individuals as

illustrated in Figure 2 is given below

dSe /dt =  𝜇𝜇A1 + 𝛽𝛽SeXe − 𝜅𝜅Se + 𝜎𝜎𝛽𝛽SeRe − 𝜎𝜎𝛽𝛽(1 − c)SeRe + 𝛿𝛿Sd − 𝜙𝜙Se − 𝜇𝜇Se ,

dSd /dt =  𝜇𝜇A2 + 𝛽𝛽SdXd − 𝜈𝜈Sd + 𝜎𝜎𝛽𝛽SdRd − 𝜎𝜎𝛽𝛽(1 − c)SdRd − 𝛿𝛿Sd + 𝜙𝜙Se − 𝜇𝜇Sd ,

dRe /dt =  𝛽𝛽(1 − c)ReXe − (𝜏𝜏2 + 𝛾𝛾)Re + 𝜎𝜎𝛽𝛽(1 − c)SeRe − 𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Rd − 𝜙𝜙Re − 𝜇𝜇Re ,

dRd /dt =  𝛽𝛽(1 − c)RdXd − (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd + 𝜎𝜎𝛽𝛽(1 − c)SdRd − 𝜎𝜎𝛽𝛽SdRd − 𝛿𝛿Rd + 𝜙𝜙Re − 𝜇𝜇Rd ,

dXd /dt =  𝜇𝜇A3 + 𝜈𝜈Sd − 𝛽𝛽SdXd − 𝛽𝛽(1 − c)RdXd + (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd − 𝛿𝛿Xd + 𝜙𝜙Xe − 𝜇𝜇Xd ,

dXe /dt =  𝜇𝜇(1 − A1 − A2 − A3) − 𝛽𝛽(1 − c)ReXe + (𝜏𝜏2 + 𝛾𝛾)Re − 𝛽𝛽SeXe + 𝜅𝜅Se + 𝛿𝛿Xd − 𝜙𝜙Xe − 𝜇𝜇Xe ,

(2)

where 𝜅𝜅 = 𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾 and 𝜈𝜈 = 𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾𝜂𝜂. Similar to the system (1), the dynamics of the system (2) can

be studied using the reduced system composed of the first 5 equations of the system (2) with Xe

replaced by 1 − Se − Sd − Re − Rd − Xd. This reduced system is given as follows

dSe /dt =  𝜇𝜇A1 + 𝛽𝛽Se(1 − Se − Sd − Re − Rd − Xd) − pSe + c𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Sd ,

dSd /dt =  𝜇𝜇A2 + 𝛽𝛽SdXd − (𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾𝜂𝜂 + 𝛿𝛿 + 𝜇𝜇)Sd + c𝜎𝜎𝛽𝛽SdRd + 𝜙𝜙Se ,

dRe /dt =  𝛽𝛽(1 − c)Re(1 − Se − Sd − Re − Rd − Xd) − (𝜏𝜏2 + 𝛾𝛾 + 𝜙𝜙 + 𝜇𝜇)Re − c𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Rd ,

dRd /dt =  𝛽𝛽(1 − c)RdXd − (𝜏𝜏2 + 𝛾𝛾𝜂𝜂 + 𝛿𝛿 + 𝜇𝜇)Rd − c𝜎𝜎𝛽𝛽SdRd + 𝜙𝜙Re ,

dXd /dt =  𝜇𝜇A3 + qSd − 𝛽𝛽SdXd − 𝛽𝛽(1 − c)RdXd + (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd − sXd + 𝜙𝜙(1 − Se − Re − Rd) ,

(3)

are carrying resistant strain undergoing dysbiosis Rd. The relationship between these two host types is

called antibiotic-induced dysbiosis and the rate 𝜙𝜙 = a𝜃𝜃, where a is the prevalence of antibiotic

exposure and 𝜃𝜃 is the rate at which antibiotic exposure will induce dysbiosis. Meanwhile, we also

assume that the microbiome recovers at a rate 𝛿𝛿. The proportions of admitted individuals that are

already colonized with sensitive bacteria and with a microbiome undergoing dysbiosis and those with

a balanced microbiome are given, respectively, by A2 and A1, while the proportion of admitted

uncolonized with a microbiome undergoing dysbiosis is given by A3. Table 2 provides a summary of

the additional parameters introduced in the proposed model. The range of values for these parameters

are taken from [9].

The system of equations describing the bacterial transmission in a hospital among individuals as

illustrated in Figure 2 is given below

dSe /dt =  𝜇𝜇A1 + 𝛽𝛽SeXe − 𝜅𝜅Se + 𝜎𝜎𝛽𝛽SeRe − 𝜎𝜎𝛽𝛽(1 − c)SeRe + 𝛿𝛿Sd − 𝜙𝜙Se − 𝜇𝜇Se ,

dSd /dt =  𝜇𝜇A2 + 𝛽𝛽SdXd − 𝜈𝜈Sd + 𝜎𝜎𝛽𝛽SdRd − 𝜎𝜎𝛽𝛽(1 − c)SdRd − 𝛿𝛿Sd + 𝜙𝜙Se − 𝜇𝜇Sd ,

dRe /dt =  𝛽𝛽(1 − c)ReXe − (𝜏𝜏2 + 𝛾𝛾)Re + 𝜎𝜎𝛽𝛽(1 − c)SeRe − 𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Rd − 𝜙𝜙Re − 𝜇𝜇Re ,

dRd /dt =  𝛽𝛽(1 − c)RdXd − (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd + 𝜎𝜎𝛽𝛽(1 − c)SdRd − 𝜎𝜎𝛽𝛽SdRd − 𝛿𝛿Rd + 𝜙𝜙Re − 𝜇𝜇Rd ,

dXd /dt =  𝜇𝜇A3 + 𝜈𝜈Sd − 𝛽𝛽SdXd − 𝛽𝛽(1 − c)RdXd + (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd − 𝛿𝛿Xd + 𝜙𝜙Xe − 𝜇𝜇Xd ,

dXe /dt =  𝜇𝜇(1 − A1 − A2 − A3) − 𝛽𝛽(1 − c)ReXe + (𝜏𝜏2 + 𝛾𝛾)Re − 𝛽𝛽SeXe + 𝜅𝜅Se + 𝛿𝛿Xd − 𝜙𝜙Xe − 𝜇𝜇Xe ,

(2)

where 𝜅𝜅 = 𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾 and 𝜈𝜈 = 𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾𝜂𝜂. Similar to the system (1), the dynamics of the system (2) can

be studied using the reduced system composed of the first 5 equations of the system (2) with Xe

replaced by 1 − Se − Sd − Re − Rd − Xd. This reduced system is given as follows

dSe /dt =  𝜇𝜇A1 + 𝛽𝛽Se(1 − Se − Sd − Re − Rd − Xd) − pSe + c𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Sd ,

dSd /dt =  𝜇𝜇A2 + 𝛽𝛽SdXd − (𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾𝜂𝜂 + 𝛿𝛿 + 𝜇𝜇)Sd + c𝜎𝜎𝛽𝛽SdRd + 𝜙𝜙Se ,

dRe /dt =  𝛽𝛽(1 − c)Re(1 − Se − Sd − Re − Rd − Xd) − (𝜏𝜏2 + 𝛾𝛾 + 𝜙𝜙 + 𝜇𝜇)Re − c𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Rd ,

dRd /dt =  𝛽𝛽(1 − c)RdXd − (𝜏𝜏2 + 𝛾𝛾𝜂𝜂 + 𝛿𝛿 + 𝜇𝜇)Rd − c𝜎𝜎𝛽𝛽SdRd + 𝜙𝜙Re ,

dXd /dt =  𝜇𝜇A3 + qSd − 𝛽𝛽SdXd − 𝛽𝛽(1 − c)RdXd + (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd − sXd + 𝜙𝜙(1 − Se − Re − Rd) ,

(3)

are carrying resistant strain undergoing dysbiosis Rd. The relationship between these two host types is

called antibiotic-induced dysbiosis and the rate 𝜙𝜙 = a𝜃𝜃, where a is the prevalence of antibiotic

exposure and 𝜃𝜃 is the rate at which antibiotic exposure will induce dysbiosis. Meanwhile, we also

assume that the microbiome recovers at a rate 𝛿𝛿. The proportions of admitted individuals that are

already colonized with sensitive bacteria and with a microbiome undergoing dysbiosis and those with

a balanced microbiome are given, respectively, by A2 and A1, while the proportion of admitted

uncolonized with a microbiome undergoing dysbiosis is given by A3. Table 2 provides a summary of

the additional parameters introduced in the proposed model. The range of values for these parameters

are taken from [9].

The system of equations describing the bacterial transmission in a hospital among individuals as

illustrated in Figure 2 is given below

dSe /dt =  𝜇𝜇A1 + 𝛽𝛽SeXe − 𝜅𝜅Se + 𝜎𝜎𝛽𝛽SeRe − 𝜎𝜎𝛽𝛽(1 − c)SeRe + 𝛿𝛿Sd − 𝜙𝜙Se − 𝜇𝜇Se ,

dSd /dt =  𝜇𝜇A2 + 𝛽𝛽SdXd − 𝜈𝜈Sd + 𝜎𝜎𝛽𝛽SdRd − 𝜎𝜎𝛽𝛽(1 − c)SdRd − 𝛿𝛿Sd + 𝜙𝜙Se − 𝜇𝜇Sd ,

dRe /dt =  𝛽𝛽(1 − c)ReXe − (𝜏𝜏2 + 𝛾𝛾)Re + 𝜎𝜎𝛽𝛽(1 − c)SeRe − 𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Rd − 𝜙𝜙Re − 𝜇𝜇Re ,
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dXe /dt =  𝜇𝜇(1 − A1 − A2 − A3) − 𝛽𝛽(1 − c)ReXe + (𝜏𝜏2 + 𝛾𝛾)Re − 𝛽𝛽SeXe + 𝜅𝜅Se + 𝛿𝛿Xd − 𝜙𝜙Xe − 𝜇𝜇Xe ,

(2)

where 𝜅𝜅 = 𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾 and 𝜈𝜈 = 𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾𝜂𝜂. Similar to the system (1), the dynamics of the system (2) can

be studied using the reduced system composed of the first 5 equations of the system (2) with Xe

replaced by 1 − Se − Sd − Re − Rd − Xd. This reduced system is given as follows

dSe /dt =  𝜇𝜇A1 + 𝛽𝛽Se(1 − Se − Sd − Re − Rd − Xd) − pSe + c𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Sd ,

dSd /dt =  𝜇𝜇A2 + 𝛽𝛽SdXd − (𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾𝜂𝜂 + 𝛿𝛿 + 𝜇𝜇)Sd + c𝜎𝜎𝛽𝛽SdRd + 𝜙𝜙Se ,

dRe /dt =  𝛽𝛽(1 − c)Re(1 − Se − Sd − Re − Rd − Xd) − (𝜏𝜏2 + 𝛾𝛾 + 𝜙𝜙 + 𝜇𝜇)Re − c𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Rd ,

dRd /dt =  𝛽𝛽(1 − c)RdXd − (𝜏𝜏2 + 𝛾𝛾𝜂𝜂 + 𝛿𝛿 + 𝜇𝜇)Rd − c𝜎𝜎𝛽𝛽SdRd + 𝜙𝜙Re ,

dXd /dt =  𝜇𝜇A3 + qSd − 𝛽𝛽SdXd − 𝛽𝛽(1 − c)RdXd + (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd − sXd + 𝜙𝜙(1 − Se − Re − Rd) ,

(3)

are carrying resistant strain undergoing dysbiosis Rd. The relationship between these two host types is

called antibiotic-induced dysbiosis and the rate 𝜙𝜙 = a𝜃𝜃, where a is the prevalence of antibiotic

exposure and 𝜃𝜃 is the rate at which antibiotic exposure will induce dysbiosis. Meanwhile, we also

assume that the microbiome recovers at a rate 𝛿𝛿. The proportions of admitted individuals that are

already colonized with sensitive bacteria and with a microbiome undergoing dysbiosis and those with

a balanced microbiome are given, respectively, by A2 and A1, while the proportion of admitted

uncolonized with a microbiome undergoing dysbiosis is given by A3. Table 2 provides a summary of

the additional parameters introduced in the proposed model. The range of values for these parameters

are taken from [9].

The system of equations describing the bacterial transmission in a hospital among individuals as

illustrated in Figure 2 is given below

dSe /dt =  𝜇𝜇A1 + 𝛽𝛽SeXe − 𝜅𝜅Se + 𝜎𝜎𝛽𝛽SeRe − 𝜎𝜎𝛽𝛽(1 − c)SeRe + 𝛿𝛿Sd − 𝜙𝜙Se − 𝜇𝜇Se ,

dSd /dt =  𝜇𝜇A2 + 𝛽𝛽SdXd − 𝜈𝜈Sd + 𝜎𝜎𝛽𝛽SdRd − 𝜎𝜎𝛽𝛽(1 − c)SdRd − 𝛿𝛿Sd + 𝜙𝜙Se − 𝜇𝜇Sd ,

dRe /dt =  𝛽𝛽(1 − c)ReXe − (𝜏𝜏2 + 𝛾𝛾)Re + 𝜎𝜎𝛽𝛽(1 − c)SeRe − 𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Rd − 𝜙𝜙Re − 𝜇𝜇Re ,

dRd /dt =  𝛽𝛽(1 − c)RdXd − (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd + 𝜎𝜎𝛽𝛽(1 − c)SdRd − 𝜎𝜎𝛽𝛽SdRd − 𝛿𝛿Rd + 𝜙𝜙Re − 𝜇𝜇Rd ,

dXd /dt =  𝜇𝜇A3 + 𝜈𝜈Sd − 𝛽𝛽SdXd − 𝛽𝛽(1 − c)RdXd + (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd − 𝛿𝛿Xd + 𝜙𝜙Xe − 𝜇𝜇Xd ,

dXe /dt =  𝜇𝜇(1 − A1 − A2 − A3) − 𝛽𝛽(1 − c)ReXe + (𝜏𝜏2 + 𝛾𝛾)Re − 𝛽𝛽SeXe + 𝜅𝜅Se + 𝛿𝛿Xd − 𝜙𝜙Xe − 𝜇𝜇Xe ,

(2)

where 𝜅𝜅 = 𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾 and 𝜈𝜈 = 𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾𝜂𝜂. Similar to the system (1), the dynamics of the system (2) can

be studied using the reduced system composed of the first 5 equations of the system (2) with Xe

replaced by 1 − Se − Sd − Re − Rd − Xd. This reduced system is given as follows

dSe /dt =  𝜇𝜇A1 + 𝛽𝛽Se(1 − Se − Sd − Re − Rd − Xd) − pSe + c𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Sd ,

dSd /dt =  𝜇𝜇A2 + 𝛽𝛽SdXd − (𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾𝜂𝜂 + 𝛿𝛿 + 𝜇𝜇)Sd + c𝜎𝜎𝛽𝛽SdRd + 𝜙𝜙Se ,

dRe /dt =  𝛽𝛽(1 − c)Re(1 − Se − Sd − Re − Rd − Xd) − (𝜏𝜏2 + 𝛾𝛾 + 𝜙𝜙 + 𝜇𝜇)Re − c𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Rd ,

dRd /dt =  𝛽𝛽(1 − c)RdXd − (𝜏𝜏2 + 𝛾𝛾𝜂𝜂 + 𝛿𝛿 + 𝜇𝜇)Rd − c𝜎𝜎𝛽𝛽SdRd + 𝜙𝜙Re ,

dXd /dt =  𝜇𝜇A3 + qSd − 𝛽𝛽SdXd − 𝛽𝛽(1 − c)RdXd + (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd − sXd + 𝜙𝜙(1 − Se − Re − Rd) ,

(3)

are carrying resistant strain undergoing dysbiosis Rd. The relationship between these two host types is

called antibiotic-induced dysbiosis and the rate 𝜙𝜙 = a𝜃𝜃, where a is the prevalence of antibiotic

exposure and 𝜃𝜃 is the rate at which antibiotic exposure will induce dysbiosis. Meanwhile, we also

assume that the microbiome recovers at a rate 𝛿𝛿. The proportions of admitted individuals that are

already colonized with sensitive bacteria and with a microbiome undergoing dysbiosis and those with

a balanced microbiome are given, respectively, by A2 and A1, while the proportion of admitted

uncolonized with a microbiome undergoing dysbiosis is given by A3. Table 2 provides a summary of

the additional parameters introduced in the proposed model. The range of values for these parameters

are taken from [9].

The system of equations describing the bacterial transmission in a hospital among individuals as

illustrated in Figure 2 is given below

dSe /dt =  𝜇𝜇A1 + 𝛽𝛽SeXe − 𝜅𝜅Se + 𝜎𝜎𝛽𝛽SeRe − 𝜎𝜎𝛽𝛽(1 − c)SeRe + 𝛿𝛿Sd − 𝜙𝜙Se − 𝜇𝜇Se ,

dSd /dt =  𝜇𝜇A2 + 𝛽𝛽SdXd − 𝜈𝜈Sd + 𝜎𝜎𝛽𝛽SdRd − 𝜎𝜎𝛽𝛽(1 − c)SdRd − 𝛿𝛿Sd + 𝜙𝜙Se − 𝜇𝜇Sd ,

dRe /dt =  𝛽𝛽(1 − c)ReXe − (𝜏𝜏2 + 𝛾𝛾)Re + 𝜎𝜎𝛽𝛽(1 − c)SeRe − 𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Rd − 𝜙𝜙Re − 𝜇𝜇Re ,

dRd /dt =  𝛽𝛽(1 − c)RdXd − (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd + 𝜎𝜎𝛽𝛽(1 − c)SdRd − 𝜎𝜎𝛽𝛽SdRd − 𝛿𝛿Rd + 𝜙𝜙Re − 𝜇𝜇Rd ,

dXd /dt =  𝜇𝜇A3 + 𝜈𝜈Sd − 𝛽𝛽SdXd − 𝛽𝛽(1 − c)RdXd + (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd − 𝛿𝛿Xd + 𝜙𝜙Xe − 𝜇𝜇Xd ,

dXe /dt =  𝜇𝜇(1 − A1 − A2 − A3) − 𝛽𝛽(1 − c)ReXe + (𝜏𝜏2 + 𝛾𝛾)Re − 𝛽𝛽SeXe + 𝜅𝜅Se + 𝛿𝛿Xd − 𝜙𝜙Xe − 𝜇𝜇Xe ,

(2)

where 𝜅𝜅 = 𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾 and 𝜈𝜈 = 𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾𝜂𝜂. Similar to the system (1), the dynamics of the system (2) can

be studied using the reduced system composed of the first 5 equations of the system (2) with Xe

replaced by 1 − Se − Sd − Re − Rd − Xd. This reduced system is given as follows

dSe /dt =  𝜇𝜇A1 + 𝛽𝛽Se(1 − Se − Sd − Re − Rd − Xd) − pSe + c𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Sd ,

dSd /dt =  𝜇𝜇A2 + 𝛽𝛽SdXd − (𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾𝜂𝜂 + 𝛿𝛿 + 𝜇𝜇)Sd + c𝜎𝜎𝛽𝛽SdRd + 𝜙𝜙Se ,

dRe /dt =  𝛽𝛽(1 − c)Re(1 − Se − Sd − Re − Rd − Xd) − (𝜏𝜏2 + 𝛾𝛾 + 𝜙𝜙 + 𝜇𝜇)Re − c𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Rd ,

dRd /dt =  𝛽𝛽(1 − c)RdXd − (𝜏𝜏2 + 𝛾𝛾𝜂𝜂 + 𝛿𝛿 + 𝜇𝜇)Rd − c𝜎𝜎𝛽𝛽SdRd + 𝜙𝜙Re ,

dXd /dt =  𝜇𝜇A3 + qSd − 𝛽𝛽SdXd − 𝛽𝛽(1 − c)RdXd + (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd − sXd + 𝜙𝜙(1 − Se − Re − Rd) ,

(3)

are carrying resistant strain undergoing dysbiosis Rd. The relationship between these two host types is

called antibiotic-induced dysbiosis and the rate 𝜙𝜙 = a𝜃𝜃, where a is the prevalence of antibiotic

exposure and 𝜃𝜃 is the rate at which antibiotic exposure will induce dysbiosis. Meanwhile, we also

assume that the microbiome recovers at a rate 𝛿𝛿. The proportions of admitted individuals that are

already colonized with sensitive bacteria and with a microbiome undergoing dysbiosis and those with

a balanced microbiome are given, respectively, by A2 and A1, while the proportion of admitted

uncolonized with a microbiome undergoing dysbiosis is given by A3. Table 2 provides a summary of

the additional parameters introduced in the proposed model. The range of values for these parameters

are taken from [9].

The system of equations describing the bacterial transmission in a hospital among individuals as

illustrated in Figure 2 is given below

dSe /dt =  𝜇𝜇A1 + 𝛽𝛽SeXe − 𝜅𝜅Se + 𝜎𝜎𝛽𝛽SeRe − 𝜎𝜎𝛽𝛽(1 − c)SeRe + 𝛿𝛿Sd − 𝜙𝜙Se − 𝜇𝜇Se ,

dSd /dt =  𝜇𝜇A2 + 𝛽𝛽SdXd − 𝜈𝜈Sd + 𝜎𝜎𝛽𝛽SdRd − 𝜎𝜎𝛽𝛽(1 − c)SdRd − 𝛿𝛿Sd + 𝜙𝜙Se − 𝜇𝜇Sd ,

dRe /dt =  𝛽𝛽(1 − c)ReXe − (𝜏𝜏2 + 𝛾𝛾)Re + 𝜎𝜎𝛽𝛽(1 − c)SeRe − 𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Rd − 𝜙𝜙Re − 𝜇𝜇Re ,

dRd /dt =  𝛽𝛽(1 − c)RdXd − (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd + 𝜎𝜎𝛽𝛽(1 − c)SdRd − 𝜎𝜎𝛽𝛽SdRd − 𝛿𝛿Rd + 𝜙𝜙Re − 𝜇𝜇Rd ,

dXd /dt =  𝜇𝜇A3 + 𝜈𝜈Sd − 𝛽𝛽SdXd − 𝛽𝛽(1 − c)RdXd + (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd − 𝛿𝛿Xd + 𝜙𝜙Xe − 𝜇𝜇Xd ,

dXe /dt =  𝜇𝜇(1 − A1 − A2 − A3) − 𝛽𝛽(1 − c)ReXe + (𝜏𝜏2 + 𝛾𝛾)Re − 𝛽𝛽SeXe + 𝜅𝜅Se + 𝛿𝛿Xd − 𝜙𝜙Xe − 𝜇𝜇Xe ,

(2)

where 𝜅𝜅 = 𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾 and 𝜈𝜈 = 𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾𝜂𝜂. Similar to the system (1), the dynamics of the system (2) can

be studied using the reduced system composed of the first 5 equations of the system (2) with Xe

replaced by 1 − Se − Sd − Re − Rd − Xd. This reduced system is given as follows

dSe /dt =  𝜇𝜇A1 + 𝛽𝛽Se(1 − Se − Sd − Re − Rd − Xd) − pSe + c𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Sd ,

dSd /dt =  𝜇𝜇A2 + 𝛽𝛽SdXd − (𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾𝜂𝜂 + 𝛿𝛿 + 𝜇𝜇)Sd + c𝜎𝜎𝛽𝛽SdRd + 𝜙𝜙Se ,

dRe /dt =  𝛽𝛽(1 − c)Re(1 − Se − Sd − Re − Rd − Xd) − (𝜏𝜏2 + 𝛾𝛾 + 𝜙𝜙 + 𝜇𝜇)Re − c𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Rd ,

dRd /dt =  𝛽𝛽(1 − c)RdXd − (𝜏𝜏2 + 𝛾𝛾𝜂𝜂 + 𝛿𝛿 + 𝜇𝜇)Rd − c𝜎𝜎𝛽𝛽SdRd + 𝜙𝜙Re ,

dXd /dt =  𝜇𝜇A3 + qSd − 𝛽𝛽SdXd − 𝛽𝛽(1 − c)RdXd + (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd − sXd + 𝜙𝜙(1 − Se − Re − Rd) ,

(3)

are carrying resistant strain undergoing dysbiosis Rd. The relationship between these two host types is

called antibiotic-induced dysbiosis and the rate 𝜙𝜙 = a𝜃𝜃, where a is the prevalence of antibiotic

exposure and 𝜃𝜃 is the rate at which antibiotic exposure will induce dysbiosis. Meanwhile, we also

assume that the microbiome recovers at a rate 𝛿𝛿. The proportions of admitted individuals that are

already colonized with sensitive bacteria and with a microbiome undergoing dysbiosis and those with

a balanced microbiome are given, respectively, by A2 and A1, while the proportion of admitted

uncolonized with a microbiome undergoing dysbiosis is given by A3. Table 2 provides a summary of

the additional parameters introduced in the proposed model. The range of values for these parameters

are taken from [9].

The system of equations describing the bacterial transmission in a hospital among individuals as

illustrated in Figure 2 is given below

dSe /dt =  𝜇𝜇A1 + 𝛽𝛽SeXe − 𝜅𝜅Se + 𝜎𝜎𝛽𝛽SeRe − 𝜎𝜎𝛽𝛽(1 − c)SeRe + 𝛿𝛿Sd − 𝜙𝜙Se − 𝜇𝜇Se ,

dSd /dt =  𝜇𝜇A2 + 𝛽𝛽SdXd − 𝜈𝜈Sd + 𝜎𝜎𝛽𝛽SdRd − 𝜎𝜎𝛽𝛽(1 − c)SdRd − 𝛿𝛿Sd + 𝜙𝜙Se − 𝜇𝜇Sd ,

dRe /dt =  𝛽𝛽(1 − c)ReXe − (𝜏𝜏2 + 𝛾𝛾)Re + 𝜎𝜎𝛽𝛽(1 − c)SeRe − 𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Rd − 𝜙𝜙Re − 𝜇𝜇Re ,
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dXd /dt =  𝜇𝜇A3 + 𝜈𝜈Sd − 𝛽𝛽SdXd − 𝛽𝛽(1 − c)RdXd + (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd − 𝛿𝛿Xd + 𝜙𝜙Xe − 𝜇𝜇Xd ,

dXe /dt =  𝜇𝜇(1 − A1 − A2 − A3) − 𝛽𝛽(1 − c)ReXe + (𝜏𝜏2 + 𝛾𝛾)Re − 𝛽𝛽SeXe + 𝜅𝜅Se + 𝛿𝛿Xd − 𝜙𝜙Xe − 𝜇𝜇Xe ,

(2)

where 𝜅𝜅 = 𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾 and 𝜈𝜈 = 𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾𝜂𝜂. Similar to the system (1), the dynamics of the system (2) can

be studied using the reduced system composed of the first 5 equations of the system (2) with Xe

replaced by 1 − Se − Sd − Re − Rd − Xd. This reduced system is given as follows

dSe /dt =  𝜇𝜇A1 + 𝛽𝛽Se(1 − Se − Sd − Re − Rd − Xd) − pSe + c𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Sd ,

dSd /dt =  𝜇𝜇A2 + 𝛽𝛽SdXd − (𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾𝜂𝜂 + 𝛿𝛿 + 𝜇𝜇)Sd + c𝜎𝜎𝛽𝛽SdRd + 𝜙𝜙Se ,

dRe /dt =  𝛽𝛽(1 − c)Re(1 − Se − Sd − Re − Rd − Xd) − (𝜏𝜏2 + 𝛾𝛾 + 𝜙𝜙 + 𝜇𝜇)Re − c𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Rd ,

dRd /dt =  𝛽𝛽(1 − c)RdXd − (𝜏𝜏2 + 𝛾𝛾𝜂𝜂 + 𝛿𝛿 + 𝜇𝜇)Rd − c𝜎𝜎𝛽𝛽SdRd + 𝜙𝜙Re ,

dXd /dt =  𝜇𝜇A3 + qSd − 𝛽𝛽SdXd − 𝛽𝛽(1 − c)RdXd + (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd − sXd + 𝜙𝜙(1 − Se − Re − Rd) ,

(3)

are carrying resistant strain undergoing dysbiosis Rd. The relationship between these two host types is

called antibiotic-induced dysbiosis and the rate 𝜙𝜙 = a𝜃𝜃, where a is the prevalence of antibiotic

exposure and 𝜃𝜃 is the rate at which antibiotic exposure will induce dysbiosis. Meanwhile, we also

assume that the microbiome recovers at a rate 𝛿𝛿. The proportions of admitted individuals that are

already colonized with sensitive bacteria and with a microbiome undergoing dysbiosis and those with

a balanced microbiome are given, respectively, by A2 and A1, while the proportion of admitted

uncolonized with a microbiome undergoing dysbiosis is given by A3. Table 2 provides a summary of
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are taken from [9].
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uncolonized with a microbiome undergoing dysbiosis is given by A3. Table 2 provides a summary of
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are taken from [9].
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replaced by 1 − Se − Sd − Re − Rd − Xd. This reduced system is given as follows

dSe /dt =  𝜇𝜇A1 + 𝛽𝛽Se(1 − Se − Sd − Re − Rd − Xd) − pSe + c𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Sd ,

dSd /dt =  𝜇𝜇A2 + 𝛽𝛽SdXd − (𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾𝜂𝜂 + 𝛿𝛿 + 𝜇𝜇)Sd + c𝜎𝜎𝛽𝛽SdRd + 𝜙𝜙Se ,

dRe /dt =  𝛽𝛽(1 − c)Re(1 − Se − Sd − Re − Rd − Xd) − (𝜏𝜏2 + 𝛾𝛾 + 𝜙𝜙 + 𝜇𝜇)Re − c𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Rd ,

dRd /dt =  𝛽𝛽(1 − c)RdXd − (𝜏𝜏2 + 𝛾𝛾𝜂𝜂 + 𝛿𝛿 + 𝜇𝜇)Rd − c𝜎𝜎𝛽𝛽SdRd + 𝜙𝜙Re ,

dXd /dt =  𝜇𝜇A3 + qSd − 𝛽𝛽SdXd − 𝛽𝛽(1 − c)RdXd + (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd − sXd + 𝜙𝜙(1 − Se − Re − Rd) ,

(3)

							          (2)

where 

are carrying resistant strain undergoing dysbiosis Rd. The relationship between these two host types is

called antibiotic-induced dysbiosis and the rate 𝜙𝜙 = a𝜃𝜃, where a is the prevalence of antibiotic

exposure and 𝜃𝜃 is the rate at which antibiotic exposure will induce dysbiosis. Meanwhile, we also

assume that the microbiome recovers at a rate 𝛿𝛿. The proportions of admitted individuals that are

already colonized with sensitive bacteria and with a microbiome undergoing dysbiosis and those with

a balanced microbiome are given, respectively, by A2 and A1, while the proportion of admitted

uncolonized with a microbiome undergoing dysbiosis is given by A3. Table 2 provides a summary of

the additional parameters introduced in the proposed model. The range of values for these parameters

are taken from [9].

The system of equations describing the bacterial transmission in a hospital among individuals as

illustrated in Figure 2 is given below

dSe /dt =  𝜇𝜇A1 + 𝛽𝛽SeXe − 𝜅𝜅Se + 𝜎𝜎𝛽𝛽SeRe − 𝜎𝜎𝛽𝛽(1 − c)SeRe + 𝛿𝛿Sd − 𝜙𝜙Se − 𝜇𝜇Se ,

dSd /dt =  𝜇𝜇A2 + 𝛽𝛽SdXd − 𝜈𝜈Sd + 𝜎𝜎𝛽𝛽SdRd − 𝜎𝜎𝛽𝛽(1 − c)SdRd − 𝛿𝛿Sd + 𝜙𝜙Se − 𝜇𝜇Sd ,

dRe /dt =  𝛽𝛽(1 − c)ReXe − (𝜏𝜏2 + 𝛾𝛾)Re + 𝜎𝜎𝛽𝛽(1 − c)SeRe − 𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Rd − 𝜙𝜙Re − 𝜇𝜇Re ,

dRd /dt =  𝛽𝛽(1 − c)RdXd − (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd + 𝜎𝜎𝛽𝛽(1 − c)SdRd − 𝜎𝜎𝛽𝛽SdRd − 𝛿𝛿Rd + 𝜙𝜙Re − 𝜇𝜇Rd ,

dXd /dt =  𝜇𝜇A3 + 𝜈𝜈Sd − 𝛽𝛽SdXd − 𝛽𝛽(1 − c)RdXd + (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd − 𝛿𝛿Xd + 𝜙𝜙Xe − 𝜇𝜇Xd ,

dXe /dt =  𝜇𝜇(1 − A1 − A2 − A3) − 𝛽𝛽(1 − c)ReXe + (𝜏𝜏2 + 𝛾𝛾)Re − 𝛽𝛽SeXe + 𝜅𝜅Se + 𝛿𝛿Xd − 𝜙𝜙Xe − 𝜇𝜇Xe ,

(2)

where 𝜅𝜅 = 𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾 and 𝜈𝜈 = 𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾𝜂𝜂. Similar to the system (1), the dynamics of the system (2) can

be studied using the reduced system composed of the first 5 equations of the system (2) with Xe

replaced by 1 − Se − Sd − Re − Rd − Xd. This reduced system is given as follows

dSe /dt =  𝜇𝜇A1 + 𝛽𝛽Se(1 − Se − Sd − Re − Rd − Xd) − pSe + c𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Sd ,

dSd /dt =  𝜇𝜇A2 + 𝛽𝛽SdXd − (𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾𝜂𝜂 + 𝛿𝛿 + 𝜇𝜇)Sd + c𝜎𝜎𝛽𝛽SdRd + 𝜙𝜙Se ,

dRe /dt =  𝛽𝛽(1 − c)Re(1 − Se − Sd − Re − Rd − Xd) − (𝜏𝜏2 + 𝛾𝛾 + 𝜙𝜙 + 𝜇𝜇)Re − c𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Rd ,

dRd /dt =  𝛽𝛽(1 − c)RdXd − (𝜏𝜏2 + 𝛾𝛾𝜂𝜂 + 𝛿𝛿 + 𝜇𝜇)Rd − c𝜎𝜎𝛽𝛽SdRd + 𝜙𝜙Re ,

dXd /dt =  𝜇𝜇A3 + qSd − 𝛽𝛽SdXd − 𝛽𝛽(1 − c)RdXd + (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd − sXd + 𝜙𝜙(1 − Se − Re − Rd) ,

(3)

  and 

are carrying resistant strain undergoing dysbiosis Rd. The relationship between these two host types is

called antibiotic-induced dysbiosis and the rate 𝜙𝜙 = a𝜃𝜃, where a is the prevalence of antibiotic

exposure and 𝜃𝜃 is the rate at which antibiotic exposure will induce dysbiosis. Meanwhile, we also

assume that the microbiome recovers at a rate 𝛿𝛿. The proportions of admitted individuals that are

already colonized with sensitive bacteria and with a microbiome undergoing dysbiosis and those with

a balanced microbiome are given, respectively, by A2 and A1, while the proportion of admitted

uncolonized with a microbiome undergoing dysbiosis is given by A3. Table 2 provides a summary of

the additional parameters introduced in the proposed model. The range of values for these parameters

are taken from [9].

The system of equations describing the bacterial transmission in a hospital among individuals as

illustrated in Figure 2 is given below

dSe /dt =  𝜇𝜇A1 + 𝛽𝛽SeXe − 𝜅𝜅Se + 𝜎𝜎𝛽𝛽SeRe − 𝜎𝜎𝛽𝛽(1 − c)SeRe + 𝛿𝛿Sd − 𝜙𝜙Se − 𝜇𝜇Se ,

dSd /dt =  𝜇𝜇A2 + 𝛽𝛽SdXd − 𝜈𝜈Sd + 𝜎𝜎𝛽𝛽SdRd − 𝜎𝜎𝛽𝛽(1 − c)SdRd − 𝛿𝛿Sd + 𝜙𝜙Se − 𝜇𝜇Sd ,

dRe /dt =  𝛽𝛽(1 − c)ReXe − (𝜏𝜏2 + 𝛾𝛾)Re + 𝜎𝜎𝛽𝛽(1 − c)SeRe − 𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Rd − 𝜙𝜙Re − 𝜇𝜇Re ,

dRd /dt =  𝛽𝛽(1 − c)RdXd − (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd + 𝜎𝜎𝛽𝛽(1 − c)SdRd − 𝜎𝜎𝛽𝛽SdRd − 𝛿𝛿Rd + 𝜙𝜙Re − 𝜇𝜇Rd ,

dXd /dt =  𝜇𝜇A3 + 𝜈𝜈Sd − 𝛽𝛽SdXd − 𝛽𝛽(1 − c)RdXd + (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd − 𝛿𝛿Xd + 𝜙𝜙Xe − 𝜇𝜇Xd ,

dXe /dt =  𝜇𝜇(1 − A1 − A2 − A3) − 𝛽𝛽(1 − c)ReXe + (𝜏𝜏2 + 𝛾𝛾)Re − 𝛽𝛽SeXe + 𝜅𝜅Se + 𝛿𝛿Xd − 𝜙𝜙Xe − 𝜇𝜇Xe ,

(2)

where 𝜅𝜅 = 𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾 and 𝜈𝜈 = 𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾𝜂𝜂. Similar to the system (1), the dynamics of the system (2) can

be studied using the reduced system composed of the first 5 equations of the system (2) with Xe

replaced by 1 − Se − Sd − Re − Rd − Xd. This reduced system is given as follows

dSe /dt =  𝜇𝜇A1 + 𝛽𝛽Se(1 − Se − Sd − Re − Rd − Xd) − pSe + c𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Sd ,

dSd /dt =  𝜇𝜇A2 + 𝛽𝛽SdXd − (𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾𝜂𝜂 + 𝛿𝛿 + 𝜇𝜇)Sd + c𝜎𝜎𝛽𝛽SdRd + 𝜙𝜙Se ,

dRe /dt =  𝛽𝛽(1 − c)Re(1 − Se − Sd − Re − Rd − Xd) − (𝜏𝜏2 + 𝛾𝛾 + 𝜙𝜙 + 𝜇𝜇)Re − c𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Rd ,

dRd /dt =  𝛽𝛽(1 − c)RdXd − (𝜏𝜏2 + 𝛾𝛾𝜂𝜂 + 𝛿𝛿 + 𝜇𝜇)Rd − c𝜎𝜎𝛽𝛽SdRd + 𝜙𝜙Re ,

dXd /dt =  𝜇𝜇A3 + qSd − 𝛽𝛽SdXd − 𝛽𝛽(1 − c)RdXd + (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd − sXd + 𝜙𝜙(1 − Se − Re − Rd) ,

(3)

 Similar 
to the system (1), the dynamics of  the system (2) 
can be studied using the reduced system composed 
of  the first 5 equations of  the system (2) with 
Xe replaced by 

are carrying resistant strain undergoing dysbiosis Rd. The relationship between these two host types is

called antibiotic-induced dysbiosis and the rate 𝜙𝜙 = a𝜃𝜃, where a is the prevalence of antibiotic

exposure and 𝜃𝜃 is the rate at which antibiotic exposure will induce dysbiosis. Meanwhile, we also

assume that the microbiome recovers at a rate 𝛿𝛿. The proportions of admitted individuals that are

already colonized with sensitive bacteria and with a microbiome undergoing dysbiosis and those with

a balanced microbiome are given, respectively, by A2 and A1, while the proportion of admitted

uncolonized with a microbiome undergoing dysbiosis is given by A3. Table 2 provides a summary of

the additional parameters introduced in the proposed model. The range of values for these parameters

are taken from [9].

The system of equations describing the bacterial transmission in a hospital among individuals as

illustrated in Figure 2 is given below

dSe /dt =  𝜇𝜇A1 + 𝛽𝛽SeXe − 𝜅𝜅Se + 𝜎𝜎𝛽𝛽SeRe − 𝜎𝜎𝛽𝛽(1 − c)SeRe + 𝛿𝛿Sd − 𝜙𝜙Se − 𝜇𝜇Se ,

dSd /dt =  𝜇𝜇A2 + 𝛽𝛽SdXd − 𝜈𝜈Sd + 𝜎𝜎𝛽𝛽SdRd − 𝜎𝜎𝛽𝛽(1 − c)SdRd − 𝛿𝛿Sd + 𝜙𝜙Se − 𝜇𝜇Sd ,

dRe /dt =  𝛽𝛽(1 − c)ReXe − (𝜏𝜏2 + 𝛾𝛾)Re + 𝜎𝜎𝛽𝛽(1 − c)SeRe − 𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Rd − 𝜙𝜙Re − 𝜇𝜇Re ,

dRd /dt =  𝛽𝛽(1 − c)RdXd − (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd + 𝜎𝜎𝛽𝛽(1 − c)SdRd − 𝜎𝜎𝛽𝛽SdRd − 𝛿𝛿Rd + 𝜙𝜙Re − 𝜇𝜇Rd ,

dXd /dt =  𝜇𝜇A3 + 𝜈𝜈Sd − 𝛽𝛽SdXd − 𝛽𝛽(1 − c)RdXd + (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd − 𝛿𝛿Xd + 𝜙𝜙Xe − 𝜇𝜇Xd ,

dXe /dt =  𝜇𝜇(1 − A1 − A2 − A3) − 𝛽𝛽(1 − c)ReXe + (𝜏𝜏2 + 𝛾𝛾)Re − 𝛽𝛽SeXe + 𝜅𝜅Se + 𝛿𝛿Xd − 𝜙𝜙Xe − 𝜇𝜇Xe ,

(2)

where 𝜅𝜅 = 𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾 and 𝜈𝜈 = 𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾𝜂𝜂. Similar to the system (1), the dynamics of the system (2) can

be studied using the reduced system composed of the first 5 equations of the system (2) with Xe

replaced by 1 − Se − Sd − Re − Rd − Xd. This reduced system is given as follows

dSe /dt =  𝜇𝜇A1 + 𝛽𝛽Se(1 − Se − Sd − Re − Rd − Xd) − pSe + c𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Sd ,

dSd /dt =  𝜇𝜇A2 + 𝛽𝛽SdXd − (𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾𝜂𝜂 + 𝛿𝛿 + 𝜇𝜇)Sd + c𝜎𝜎𝛽𝛽SdRd + 𝜙𝜙Se ,

dRe /dt =  𝛽𝛽(1 − c)Re(1 − Se − Sd − Re − Rd − Xd) − (𝜏𝜏2 + 𝛾𝛾 + 𝜙𝜙 + 𝜇𝜇)Re − c𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Rd ,

dRd /dt =  𝛽𝛽(1 − c)RdXd − (𝜏𝜏2 + 𝛾𝛾𝜂𝜂 + 𝛿𝛿 + 𝜇𝜇)Rd − c𝜎𝜎𝛽𝛽SdRd + 𝜙𝜙Re ,

dXd /dt =  𝜇𝜇A3 + qSd − 𝛽𝛽SdXd − 𝛽𝛽(1 − c)RdXd + (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd − sXd + 𝜙𝜙(1 − Se − Re − Rd) ,

(3)

 This 
reduced system is given as follows

are carrying resistant strain undergoing dysbiosis Rd. The relationship between these two host types is

called antibiotic-induced dysbiosis and the rate 𝜙𝜙 = a𝜃𝜃, where a is the prevalence of antibiotic

exposure and 𝜃𝜃 is the rate at which antibiotic exposure will induce dysbiosis. Meanwhile, we also

assume that the microbiome recovers at a rate 𝛿𝛿. The proportions of admitted individuals that are

already colonized with sensitive bacteria and with a microbiome undergoing dysbiosis and those with

a balanced microbiome are given, respectively, by A2 and A1, while the proportion of admitted

uncolonized with a microbiome undergoing dysbiosis is given by A3. Table 2 provides a summary of

the additional parameters introduced in the proposed model. The range of values for these parameters

are taken from [9].

The system of equations describing the bacterial transmission in a hospital among individuals as

illustrated in Figure 2 is given below

dSe /dt =  𝜇𝜇A1 + 𝛽𝛽SeXe − 𝜅𝜅Se + 𝜎𝜎𝛽𝛽SeRe − 𝜎𝜎𝛽𝛽(1 − c)SeRe + 𝛿𝛿Sd − 𝜙𝜙Se − 𝜇𝜇Se ,

dSd /dt =  𝜇𝜇A2 + 𝛽𝛽SdXd − 𝜈𝜈Sd + 𝜎𝜎𝛽𝛽SdRd − 𝜎𝜎𝛽𝛽(1 − c)SdRd − 𝛿𝛿Sd + 𝜙𝜙Se − 𝜇𝜇Sd ,

dRe /dt =  𝛽𝛽(1 − c)ReXe − (𝜏𝜏2 + 𝛾𝛾)Re + 𝜎𝜎𝛽𝛽(1 − c)SeRe − 𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Rd − 𝜙𝜙Re − 𝜇𝜇Re ,

dRd /dt =  𝛽𝛽(1 − c)RdXd − (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd + 𝜎𝜎𝛽𝛽(1 − c)SdRd − 𝜎𝜎𝛽𝛽SdRd − 𝛿𝛿Rd + 𝜙𝜙Re − 𝜇𝜇Rd ,

dXd /dt =  𝜇𝜇A3 + 𝜈𝜈Sd − 𝛽𝛽SdXd − 𝛽𝛽(1 − c)RdXd + (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd − 𝛿𝛿Xd + 𝜙𝜙Xe − 𝜇𝜇Xd ,

dXe /dt =  𝜇𝜇(1 − A1 − A2 − A3) − 𝛽𝛽(1 − c)ReXe + (𝜏𝜏2 + 𝛾𝛾)Re − 𝛽𝛽SeXe + 𝜅𝜅Se + 𝛿𝛿Xd − 𝜙𝜙Xe − 𝜇𝜇Xe ,

(2)

where 𝜅𝜅 = 𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾 and 𝜈𝜈 = 𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾𝜂𝜂. Similar to the system (1), the dynamics of the system (2) can

be studied using the reduced system composed of the first 5 equations of the system (2) with Xe

replaced by 1 − Se − Sd − Re − Rd − Xd. This reduced system is given as follows

dSe /dt =  𝜇𝜇A1 + 𝛽𝛽Se(1 − Se − Sd − Re − Rd − Xd) − pSe + c𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Sd ,

dSd /dt =  𝜇𝜇A2 + 𝛽𝛽SdXd − (𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾𝜂𝜂 + 𝛿𝛿 + 𝜇𝜇)Sd + c𝜎𝜎𝛽𝛽SdRd + 𝜙𝜙Se ,

dRe /dt =  𝛽𝛽(1 − c)Re(1 − Se − Sd − Re − Rd − Xd) − (𝜏𝜏2 + 𝛾𝛾 + 𝜙𝜙 + 𝜇𝜇)Re − c𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Rd ,

dRd /dt =  𝛽𝛽(1 − c)RdXd − (𝜏𝜏2 + 𝛾𝛾𝜂𝜂 + 𝛿𝛿 + 𝜇𝜇)Rd − c𝜎𝜎𝛽𝛽SdRd + 𝜙𝜙Re ,

dXd /dt =  𝜇𝜇A3 + qSd − 𝛽𝛽SdXd − 𝛽𝛽(1 − c)RdXd + (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd − sXd + 𝜙𝜙(1 − Se − Re − Rd) ,
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are carrying resistant strain undergoing dysbiosis Rd. The relationship between these two host types is

called antibiotic-induced dysbiosis and the rate 𝜙𝜙 = a𝜃𝜃, where a is the prevalence of antibiotic

exposure and 𝜃𝜃 is the rate at which antibiotic exposure will induce dysbiosis. Meanwhile, we also

assume that the microbiome recovers at a rate 𝛿𝛿. The proportions of admitted individuals that are

already colonized with sensitive bacteria and with a microbiome undergoing dysbiosis and those with

a balanced microbiome are given, respectively, by A2 and A1, while the proportion of admitted

uncolonized with a microbiome undergoing dysbiosis is given by A3. Table 2 provides a summary of

the additional parameters introduced in the proposed model. The range of values for these parameters

are taken from [9].

The system of equations describing the bacterial transmission in a hospital among individuals as
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dSd /dt =  𝜇𝜇A2 + 𝛽𝛽SdXd − (𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾𝜂𝜂 + 𝛿𝛿 + 𝜇𝜇)Sd + c𝜎𝜎𝛽𝛽SdRd + 𝜙𝜙Se ,

dRe /dt =  𝛽𝛽(1 − c)Re(1 − Se − Sd − Re − Rd − Xd) − (𝜏𝜏2 + 𝛾𝛾 + 𝜙𝜙 + 𝜇𝜇)Re − c𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Rd ,

dRd /dt =  𝛽𝛽(1 − c)RdXd − (𝜏𝜏2 + 𝛾𝛾𝜂𝜂 + 𝛿𝛿 + 𝜇𝜇)Rd − c𝜎𝜎𝛽𝛽SdRd + 𝜙𝜙Re ,

dXd /dt =  𝜇𝜇A3 + qSd − 𝛽𝛽SdXd − 𝛽𝛽(1 − c)RdXd + (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd − sXd + 𝜙𝜙(1 − Se − Re − Rd) ,

(3)

Table 2. Description and range of  parameter values of  the model in the system (2) in addition to the 
parameters listed in Table 1.

Parameter Description Range 

A1 Proportion of  admitted already colonized with sensitive bacteria with a balanced 
microbiome

[0, 1]

A2 Proportion of  admitted already colonized with sensitive bacteria with a microbiome 
undergoing dysbiosis 

[0, 1]

A3 Proportion of  admitted uncolonized with a balanced microbiome [0, 1] 

γη Per-capita clearance rate of  bacteria due to immune response undergoing dysbiosis, 
where γη =γ(1−η)

> 0

η Resource competition [0.2, 0.8]

φ Relative rate of  antibiotics induce dysbiosis which depends on a and θ, i.e., φ = aθ [0, 1]

a Antibiotic exposure prevalence [0, 1] 

θ Rate at which antibiotic exposure causes dysbiosis [0, 1] 

δ Recovery rate of  microbiome > 0



	 Chiang Mai J. Sci. 2023; 50(3)6

are carrying resistant strain undergoing dysbiosis Rd. The relationship between these two host types is

called antibiotic-induced dysbiosis and the rate 𝜙𝜙 = a𝜃𝜃, where a is the prevalence of antibiotic

exposure and 𝜃𝜃 is the rate at which antibiotic exposure will induce dysbiosis. Meanwhile, we also

assume that the microbiome recovers at a rate 𝛿𝛿. The proportions of admitted individuals that are

already colonized with sensitive bacteria and with a microbiome undergoing dysbiosis and those with

a balanced microbiome are given, respectively, by A2 and A1, while the proportion of admitted

uncolonized with a microbiome undergoing dysbiosis is given by A3. Table 2 provides a summary of

the additional parameters introduced in the proposed model. The range of values for these parameters

are taken from [9].

The system of equations describing the bacterial transmission in a hospital among individuals as

illustrated in Figure 2 is given below

dSe /dt =  𝜇𝜇A1 + 𝛽𝛽SeXe − 𝜅𝜅Se + 𝜎𝜎𝛽𝛽SeRe − 𝜎𝜎𝛽𝛽(1 − c)SeRe + 𝛿𝛿Sd − 𝜙𝜙Se − 𝜇𝜇Se ,

dSd /dt =  𝜇𝜇A2 + 𝛽𝛽SdXd − 𝜈𝜈Sd + 𝜎𝜎𝛽𝛽SdRd − 𝜎𝜎𝛽𝛽(1 − c)SdRd − 𝛿𝛿Sd + 𝜙𝜙Se − 𝜇𝜇Sd ,

dRe /dt =  𝛽𝛽(1 − c)ReXe − (𝜏𝜏2 + 𝛾𝛾)Re + 𝜎𝜎𝛽𝛽(1 − c)SeRe − 𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Rd − 𝜙𝜙Re − 𝜇𝜇Re ,

dRd /dt =  𝛽𝛽(1 − c)RdXd − (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd + 𝜎𝜎𝛽𝛽(1 − c)SdRd − 𝜎𝜎𝛽𝛽SdRd − 𝛿𝛿Rd + 𝜙𝜙Re − 𝜇𝜇Rd ,

dXd /dt =  𝜇𝜇A3 + 𝜈𝜈Sd − 𝛽𝛽SdXd − 𝛽𝛽(1 − c)RdXd + (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd − 𝛿𝛿Xd + 𝜙𝜙Xe − 𝜇𝜇Xd ,

dXe /dt =  𝜇𝜇(1 − A1 − A2 − A3) − 𝛽𝛽(1 − c)ReXe + (𝜏𝜏2 + 𝛾𝛾)Re − 𝛽𝛽SeXe + 𝜅𝜅Se + 𝛿𝛿Xd − 𝜙𝜙Xe − 𝜇𝜇Xe ,

(2)

where 𝜅𝜅 = 𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾 and 𝜈𝜈 = 𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾𝜂𝜂. Similar to the system (1), the dynamics of the system (2) can

be studied using the reduced system composed of the first 5 equations of the system (2) with Xe

replaced by 1 − Se − Sd − Re − Rd − Xd. This reduced system is given as follows

dSe /dt =  𝜇𝜇A1 + 𝛽𝛽Se(1 − Se − Sd − Re − Rd − Xd) − pSe + c𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Sd ,

dSd /dt =  𝜇𝜇A2 + 𝛽𝛽SdXd − (𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾𝜂𝜂 + 𝛿𝛿 + 𝜇𝜇)Sd + c𝜎𝜎𝛽𝛽SdRd + 𝜙𝜙Se ,

dRe /dt =  𝛽𝛽(1 − c)Re(1 − Se − Sd − Re − Rd − Xd) − (𝜏𝜏2 + 𝛾𝛾 + 𝜙𝜙 + 𝜇𝜇)Re − c𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Rd ,

dRd /dt =  𝛽𝛽(1 − c)RdXd − (𝜏𝜏2 + 𝛾𝛾𝜂𝜂 + 𝛿𝛿 + 𝜇𝜇)Rd − c𝜎𝜎𝛽𝛽SdRd + 𝜙𝜙Re ,

dXd /dt =  𝜇𝜇A3 + qSd − 𝛽𝛽SdXd − 𝛽𝛽(1 − c)RdXd + (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd − sXd + 𝜙𝜙(1 − Se − Re − Rd) ,

(3)

are carrying resistant strain undergoing dysbiosis Rd. The relationship between these two host types is

called antibiotic-induced dysbiosis and the rate 𝜙𝜙 = a𝜃𝜃, where a is the prevalence of antibiotic

exposure and 𝜃𝜃 is the rate at which antibiotic exposure will induce dysbiosis. Meanwhile, we also

assume that the microbiome recovers at a rate 𝛿𝛿. The proportions of admitted individuals that are

already colonized with sensitive bacteria and with a microbiome undergoing dysbiosis and those with

a balanced microbiome are given, respectively, by A2 and A1, while the proportion of admitted

uncolonized with a microbiome undergoing dysbiosis is given by A3. Table 2 provides a summary of

the additional parameters introduced in the proposed model. The range of values for these parameters

are taken from [9].

The system of equations describing the bacterial transmission in a hospital among individuals as

illustrated in Figure 2 is given below

dSe /dt =  𝜇𝜇A1 + 𝛽𝛽SeXe − 𝜅𝜅Se + 𝜎𝜎𝛽𝛽SeRe − 𝜎𝜎𝛽𝛽(1 − c)SeRe + 𝛿𝛿Sd − 𝜙𝜙Se − 𝜇𝜇Se ,

dSd /dt =  𝜇𝜇A2 + 𝛽𝛽SdXd − 𝜈𝜈Sd + 𝜎𝜎𝛽𝛽SdRd − 𝜎𝜎𝛽𝛽(1 − c)SdRd − 𝛿𝛿Sd + 𝜙𝜙Se − 𝜇𝜇Sd ,

dRe /dt =  𝛽𝛽(1 − c)ReXe − (𝜏𝜏2 + 𝛾𝛾)Re + 𝜎𝜎𝛽𝛽(1 − c)SeRe − 𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Rd − 𝜙𝜙Re − 𝜇𝜇Re ,

dRd /dt =  𝛽𝛽(1 − c)RdXd − (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd + 𝜎𝜎𝛽𝛽(1 − c)SdRd − 𝜎𝜎𝛽𝛽SdRd − 𝛿𝛿Rd + 𝜙𝜙Re − 𝜇𝜇Rd ,

dXd /dt =  𝜇𝜇A3 + 𝜈𝜈Sd − 𝛽𝛽SdXd − 𝛽𝛽(1 − c)RdXd + (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd − 𝛿𝛿Xd + 𝜙𝜙Xe − 𝜇𝜇Xd ,

dXe /dt =  𝜇𝜇(1 − A1 − A2 − A3) − 𝛽𝛽(1 − c)ReXe + (𝜏𝜏2 + 𝛾𝛾)Re − 𝛽𝛽SeXe + 𝜅𝜅Se + 𝛿𝛿Xd − 𝜙𝜙Xe − 𝜇𝜇Xe ,

(2)

where 𝜅𝜅 = 𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾 and 𝜈𝜈 = 𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾𝜂𝜂. Similar to the system (1), the dynamics of the system (2) can

be studied using the reduced system composed of the first 5 equations of the system (2) with Xe

replaced by 1 − Se − Sd − Re − Rd − Xd. This reduced system is given as follows

dSe /dt =  𝜇𝜇A1 + 𝛽𝛽Se(1 − Se − Sd − Re − Rd − Xd) − pSe + c𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Sd ,

dSd /dt =  𝜇𝜇A2 + 𝛽𝛽SdXd − (𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾𝜂𝜂 + 𝛿𝛿 + 𝜇𝜇)Sd + c𝜎𝜎𝛽𝛽SdRd + 𝜙𝜙Se ,

dRe /dt =  𝛽𝛽(1 − c)Re(1 − Se − Sd − Re − Rd − Xd) − (𝜏𝜏2 + 𝛾𝛾 + 𝜙𝜙 + 𝜇𝜇)Re − c𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Rd ,

dRd /dt =  𝛽𝛽(1 − c)RdXd − (𝜏𝜏2 + 𝛾𝛾𝜂𝜂 + 𝛿𝛿 + 𝜇𝜇)Rd − c𝜎𝜎𝛽𝛽SdRd + 𝜙𝜙Re ,

dXd /dt =  𝜇𝜇A3 + qSd − 𝛽𝛽SdXd − 𝛽𝛽(1 − c)RdXd + (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd − sXd + 𝜙𝜙(1 − Se − Re − Rd) ,

(3)

are carrying resistant strain undergoing dysbiosis Rd. The relationship between these two host types is

called antibiotic-induced dysbiosis and the rate 𝜙𝜙 = a𝜃𝜃, where a is the prevalence of antibiotic

exposure and 𝜃𝜃 is the rate at which antibiotic exposure will induce dysbiosis. Meanwhile, we also

assume that the microbiome recovers at a rate 𝛿𝛿. The proportions of admitted individuals that are

already colonized with sensitive bacteria and with a microbiome undergoing dysbiosis and those with

a balanced microbiome are given, respectively, by A2 and A1, while the proportion of admitted

uncolonized with a microbiome undergoing dysbiosis is given by A3. Table 2 provides a summary of

the additional parameters introduced in the proposed model. The range of values for these parameters

are taken from [9].

The system of equations describing the bacterial transmission in a hospital among individuals as

illustrated in Figure 2 is given below

dSe /dt =  𝜇𝜇A1 + 𝛽𝛽SeXe − 𝜅𝜅Se + 𝜎𝜎𝛽𝛽SeRe − 𝜎𝜎𝛽𝛽(1 − c)SeRe + 𝛿𝛿Sd − 𝜙𝜙Se − 𝜇𝜇Se ,

dSd /dt =  𝜇𝜇A2 + 𝛽𝛽SdXd − 𝜈𝜈Sd + 𝜎𝜎𝛽𝛽SdRd − 𝜎𝜎𝛽𝛽(1 − c)SdRd − 𝛿𝛿Sd + 𝜙𝜙Se − 𝜇𝜇Sd ,

dRe /dt =  𝛽𝛽(1 − c)ReXe − (𝜏𝜏2 + 𝛾𝛾)Re + 𝜎𝜎𝛽𝛽(1 − c)SeRe − 𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Rd − 𝜙𝜙Re − 𝜇𝜇Re ,

dRd /dt =  𝛽𝛽(1 − c)RdXd − (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd + 𝜎𝜎𝛽𝛽(1 − c)SdRd − 𝜎𝜎𝛽𝛽SdRd − 𝛿𝛿Rd + 𝜙𝜙Re − 𝜇𝜇Rd ,

dXd /dt =  𝜇𝜇A3 + 𝜈𝜈Sd − 𝛽𝛽SdXd − 𝛽𝛽(1 − c)RdXd + (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd − 𝛿𝛿Xd + 𝜙𝜙Xe − 𝜇𝜇Xd ,

dXe /dt =  𝜇𝜇(1 − A1 − A2 − A3) − 𝛽𝛽(1 − c)ReXe + (𝜏𝜏2 + 𝛾𝛾)Re − 𝛽𝛽SeXe + 𝜅𝜅Se + 𝛿𝛿Xd − 𝜙𝜙Xe − 𝜇𝜇Xe ,

(2)

where 𝜅𝜅 = 𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾 and 𝜈𝜈 = 𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾𝜂𝜂. Similar to the system (1), the dynamics of the system (2) can

be studied using the reduced system composed of the first 5 equations of the system (2) with Xe

replaced by 1 − Se − Sd − Re − Rd − Xd. This reduced system is given as follows

dSe /dt =  𝜇𝜇A1 + 𝛽𝛽Se(1 − Se − Sd − Re − Rd − Xd) − pSe + c𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Sd ,

dSd /dt =  𝜇𝜇A2 + 𝛽𝛽SdXd − (𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾𝜂𝜂 + 𝛿𝛿 + 𝜇𝜇)Sd + c𝜎𝜎𝛽𝛽SdRd + 𝜙𝜙Se ,

dRe /dt =  𝛽𝛽(1 − c)Re(1 − Se − Sd − Re − Rd − Xd) − (𝜏𝜏2 + 𝛾𝛾 + 𝜙𝜙 + 𝜇𝜇)Re − c𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Rd ,

dRd /dt =  𝛽𝛽(1 − c)RdXd − (𝜏𝜏2 + 𝛾𝛾𝜂𝜂 + 𝛿𝛿 + 𝜇𝜇)Rd − c𝜎𝜎𝛽𝛽SdRd + 𝜙𝜙Re ,

dXd /dt =  𝜇𝜇A3 + qSd − 𝛽𝛽SdXd − 𝛽𝛽(1 − c)RdXd + (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd − sXd + 𝜙𝜙(1 − Se − Re − Rd) ,

(3)

are carrying resistant strain undergoing dysbiosis Rd. The relationship between these two host types is

called antibiotic-induced dysbiosis and the rate 𝜙𝜙 = a𝜃𝜃, where a is the prevalence of antibiotic

exposure and 𝜃𝜃 is the rate at which antibiotic exposure will induce dysbiosis. Meanwhile, we also

assume that the microbiome recovers at a rate 𝛿𝛿. The proportions of admitted individuals that are

already colonized with sensitive bacteria and with a microbiome undergoing dysbiosis and those with

a balanced microbiome are given, respectively, by A2 and A1, while the proportion of admitted

uncolonized with a microbiome undergoing dysbiosis is given by A3. Table 2 provides a summary of

the additional parameters introduced in the proposed model. The range of values for these parameters

are taken from [9].

The system of equations describing the bacterial transmission in a hospital among individuals as

illustrated in Figure 2 is given below

dSe /dt =  𝜇𝜇A1 + 𝛽𝛽SeXe − 𝜅𝜅Se + 𝜎𝜎𝛽𝛽SeRe − 𝜎𝜎𝛽𝛽(1 − c)SeRe + 𝛿𝛿Sd − 𝜙𝜙Se − 𝜇𝜇Se ,

dSd /dt =  𝜇𝜇A2 + 𝛽𝛽SdXd − 𝜈𝜈Sd + 𝜎𝜎𝛽𝛽SdRd − 𝜎𝜎𝛽𝛽(1 − c)SdRd − 𝛿𝛿Sd + 𝜙𝜙Se − 𝜇𝜇Sd ,

dRe /dt =  𝛽𝛽(1 − c)ReXe − (𝜏𝜏2 + 𝛾𝛾)Re + 𝜎𝜎𝛽𝛽(1 − c)SeRe − 𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Rd − 𝜙𝜙Re − 𝜇𝜇Re ,

dRd /dt =  𝛽𝛽(1 − c)RdXd − (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd + 𝜎𝜎𝛽𝛽(1 − c)SdRd − 𝜎𝜎𝛽𝛽SdRd − 𝛿𝛿Rd + 𝜙𝜙Re − 𝜇𝜇Rd ,

dXd /dt =  𝜇𝜇A3 + 𝜈𝜈Sd − 𝛽𝛽SdXd − 𝛽𝛽(1 − c)RdXd + (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd − 𝛿𝛿Xd + 𝜙𝜙Xe − 𝜇𝜇Xd ,

dXe /dt =  𝜇𝜇(1 − A1 − A2 − A3) − 𝛽𝛽(1 − c)ReXe + (𝜏𝜏2 + 𝛾𝛾)Re − 𝛽𝛽SeXe + 𝜅𝜅Se + 𝛿𝛿Xd − 𝜙𝜙Xe − 𝜇𝜇Xe ,

(2)

where 𝜅𝜅 = 𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾 and 𝜈𝜈 = 𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾𝜂𝜂. Similar to the system (1), the dynamics of the system (2) can

be studied using the reduced system composed of the first 5 equations of the system (2) with Xe

replaced by 1 − Se − Sd − Re − Rd − Xd. This reduced system is given as follows

dSe /dt =  𝜇𝜇A1 + 𝛽𝛽Se(1 − Se − Sd − Re − Rd − Xd) − pSe + c𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Sd ,

dSd /dt =  𝜇𝜇A2 + 𝛽𝛽SdXd − (𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾𝜂𝜂 + 𝛿𝛿 + 𝜇𝜇)Sd + c𝜎𝜎𝛽𝛽SdRd + 𝜙𝜙Se ,

dRe /dt =  𝛽𝛽(1 − c)Re(1 − Se − Sd − Re − Rd − Xd) − (𝜏𝜏2 + 𝛾𝛾 + 𝜙𝜙 + 𝜇𝜇)Re − c𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Rd ,

dRd /dt =  𝛽𝛽(1 − c)RdXd − (𝜏𝜏2 + 𝛾𝛾𝜂𝜂 + 𝛿𝛿 + 𝜇𝜇)Rd − c𝜎𝜎𝛽𝛽SdRd + 𝜙𝜙Re ,

dXd /dt =  𝜇𝜇A3 + qSd − 𝛽𝛽SdXd − 𝛽𝛽(1 − c)RdXd + (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd − sXd + 𝜙𝜙(1 − Se − Re − Rd) ,

(3)

are carrying resistant strain undergoing dysbiosis Rd. The relationship between these two host types is

called antibiotic-induced dysbiosis and the rate 𝜙𝜙 = a𝜃𝜃, where a is the prevalence of antibiotic

exposure and 𝜃𝜃 is the rate at which antibiotic exposure will induce dysbiosis. Meanwhile, we also

assume that the microbiome recovers at a rate 𝛿𝛿. The proportions of admitted individuals that are

already colonized with sensitive bacteria and with a microbiome undergoing dysbiosis and those with

a balanced microbiome are given, respectively, by A2 and A1, while the proportion of admitted

uncolonized with a microbiome undergoing dysbiosis is given by A3. Table 2 provides a summary of

the additional parameters introduced in the proposed model. The range of values for these parameters

are taken from [9].

The system of equations describing the bacterial transmission in a hospital among individuals as

illustrated in Figure 2 is given below

dSe /dt =  𝜇𝜇A1 + 𝛽𝛽SeXe − 𝜅𝜅Se + 𝜎𝜎𝛽𝛽SeRe − 𝜎𝜎𝛽𝛽(1 − c)SeRe + 𝛿𝛿Sd − 𝜙𝜙Se − 𝜇𝜇Se ,

dSd /dt =  𝜇𝜇A2 + 𝛽𝛽SdXd − 𝜈𝜈Sd + 𝜎𝜎𝛽𝛽SdRd − 𝜎𝜎𝛽𝛽(1 − c)SdRd − 𝛿𝛿Sd + 𝜙𝜙Se − 𝜇𝜇Sd ,

dRe /dt =  𝛽𝛽(1 − c)ReXe − (𝜏𝜏2 + 𝛾𝛾)Re + 𝜎𝜎𝛽𝛽(1 − c)SeRe − 𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Rd − 𝜙𝜙Re − 𝜇𝜇Re ,

dRd /dt =  𝛽𝛽(1 − c)RdXd − (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd + 𝜎𝜎𝛽𝛽(1 − c)SdRd − 𝜎𝜎𝛽𝛽SdRd − 𝛿𝛿Rd + 𝜙𝜙Re − 𝜇𝜇Rd ,

dXd /dt =  𝜇𝜇A3 + 𝜈𝜈Sd − 𝛽𝛽SdXd − 𝛽𝛽(1 − c)RdXd + (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd − 𝛿𝛿Xd + 𝜙𝜙Xe − 𝜇𝜇Xd ,

dXe /dt =  𝜇𝜇(1 − A1 − A2 − A3) − 𝛽𝛽(1 − c)ReXe + (𝜏𝜏2 + 𝛾𝛾)Re − 𝛽𝛽SeXe + 𝜅𝜅Se + 𝛿𝛿Xd − 𝜙𝜙Xe − 𝜇𝜇Xe ,

(2)

where 𝜅𝜅 = 𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾 and 𝜈𝜈 = 𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾𝜂𝜂. Similar to the system (1), the dynamics of the system (2) can

be studied using the reduced system composed of the first 5 equations of the system (2) with Xe

replaced by 1 − Se − Sd − Re − Rd − Xd. This reduced system is given as follows

dSe /dt =  𝜇𝜇A1 + 𝛽𝛽Se(1 − Se − Sd − Re − Rd − Xd) − pSe + c𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Sd ,

dSd /dt =  𝜇𝜇A2 + 𝛽𝛽SdXd − (𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾𝜂𝜂 + 𝛿𝛿 + 𝜇𝜇)Sd + c𝜎𝜎𝛽𝛽SdRd + 𝜙𝜙Se ,

dRe /dt =  𝛽𝛽(1 − c)Re(1 − Se − Sd − Re − Rd − Xd) − (𝜏𝜏2 + 𝛾𝛾 + 𝜙𝜙 + 𝜇𝜇)Re − c𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Rd ,

dRd /dt =  𝛽𝛽(1 − c)RdXd − (𝜏𝜏2 + 𝛾𝛾𝜂𝜂 + 𝛿𝛿 + 𝜇𝜇)Rd − c𝜎𝜎𝛽𝛽SdRd + 𝜙𝜙Re ,

dXd /dt =  𝜇𝜇A3 + qSd − 𝛽𝛽SdXd − 𝛽𝛽(1 − c)RdXd + (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd − sXd + 𝜙𝜙(1 − Se − Re − Rd) ,

(3)

are carrying resistant strain undergoing dysbiosis Rd. The relationship between these two host types is

called antibiotic-induced dysbiosis and the rate 𝜙𝜙 = a𝜃𝜃, where a is the prevalence of antibiotic

exposure and 𝜃𝜃 is the rate at which antibiotic exposure will induce dysbiosis. Meanwhile, we also

assume that the microbiome recovers at a rate 𝛿𝛿. The proportions of admitted individuals that are

already colonized with sensitive bacteria and with a microbiome undergoing dysbiosis and those with

a balanced microbiome are given, respectively, by A2 and A1, while the proportion of admitted

uncolonized with a microbiome undergoing dysbiosis is given by A3. Table 2 provides a summary of

the additional parameters introduced in the proposed model. The range of values for these parameters

are taken from [9].

The system of equations describing the bacterial transmission in a hospital among individuals as

illustrated in Figure 2 is given below

dSe /dt =  𝜇𝜇A1 + 𝛽𝛽SeXe − 𝜅𝜅Se + 𝜎𝜎𝛽𝛽SeRe − 𝜎𝜎𝛽𝛽(1 − c)SeRe + 𝛿𝛿Sd − 𝜙𝜙Se − 𝜇𝜇Se ,
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dRe /dt =  𝛽𝛽(1 − c)ReXe − (𝜏𝜏2 + 𝛾𝛾)Re + 𝜎𝜎𝛽𝛽(1 − c)SeRe − 𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Rd − 𝜙𝜙Re − 𝜇𝜇Re ,
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where 𝜅𝜅 = 𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾 and 𝜈𝜈 = 𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾𝜂𝜂. Similar to the system (1), the dynamics of the system (2) can

be studied using the reduced system composed of the first 5 equations of the system (2) with Xe

replaced by 1 − Se − Sd − Re − Rd − Xd. This reduced system is given as follows

dSe /dt =  𝜇𝜇A1 + 𝛽𝛽Se(1 − Se − Sd − Re − Rd − Xd) − pSe + c𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Sd ,

dSd /dt =  𝜇𝜇A2 + 𝛽𝛽SdXd − (𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾𝜂𝜂 + 𝛿𝛿 + 𝜇𝜇)Sd + c𝜎𝜎𝛽𝛽SdRd + 𝜙𝜙Se ,

dRe /dt =  𝛽𝛽(1 − c)Re(1 − Se − Sd − Re − Rd − Xd) − (𝜏𝜏2 + 𝛾𝛾 + 𝜙𝜙 + 𝜇𝜇)Re − c𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Rd ,
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(3)

are carrying resistant strain undergoing dysbiosis Rd. The relationship between these two host types is

called antibiotic-induced dysbiosis and the rate 𝜙𝜙 = a𝜃𝜃, where a is the prevalence of antibiotic

exposure and 𝜃𝜃 is the rate at which antibiotic exposure will induce dysbiosis. Meanwhile, we also

assume that the microbiome recovers at a rate 𝛿𝛿. The proportions of admitted individuals that are

already colonized with sensitive bacteria and with a microbiome undergoing dysbiosis and those with

a balanced microbiome are given, respectively, by A2 and A1, while the proportion of admitted

uncolonized with a microbiome undergoing dysbiosis is given by A3. Table 2 provides a summary of

the additional parameters introduced in the proposed model. The range of values for these parameters

are taken from [9].

The system of equations describing the bacterial transmission in a hospital among individuals as

illustrated in Figure 2 is given below

dSe /dt =  𝜇𝜇A1 + 𝛽𝛽SeXe − 𝜅𝜅Se + 𝜎𝜎𝛽𝛽SeRe − 𝜎𝜎𝛽𝛽(1 − c)SeRe + 𝛿𝛿Sd − 𝜙𝜙Se − 𝜇𝜇Se ,

dSd /dt =  𝜇𝜇A2 + 𝛽𝛽SdXd − 𝜈𝜈Sd + 𝜎𝜎𝛽𝛽SdRd − 𝜎𝜎𝛽𝛽(1 − c)SdRd − 𝛿𝛿Sd + 𝜙𝜙Se − 𝜇𝜇Sd ,

dRe /dt =  𝛽𝛽(1 − c)ReXe − (𝜏𝜏2 + 𝛾𝛾)Re + 𝜎𝜎𝛽𝛽(1 − c)SeRe − 𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Rd − 𝜙𝜙Re − 𝜇𝜇Re ,

dRd /dt =  𝛽𝛽(1 − c)RdXd − (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd + 𝜎𝜎𝛽𝛽(1 − c)SdRd − 𝜎𝜎𝛽𝛽SdRd − 𝛿𝛿Rd + 𝜙𝜙Re − 𝜇𝜇Rd ,

dXd /dt =  𝜇𝜇A3 + 𝜈𝜈Sd − 𝛽𝛽SdXd − 𝛽𝛽(1 − c)RdXd + (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd − 𝛿𝛿Xd + 𝜙𝜙Xe − 𝜇𝜇Xd ,

dXe /dt =  𝜇𝜇(1 − A1 − A2 − A3) − 𝛽𝛽(1 − c)ReXe + (𝜏𝜏2 + 𝛾𝛾)Re − 𝛽𝛽SeXe + 𝜅𝜅Se + 𝛿𝛿Xd − 𝜙𝜙Xe − 𝜇𝜇Xe ,

(2)

where 𝜅𝜅 = 𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾 and 𝜈𝜈 = 𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾𝜂𝜂. Similar to the system (1), the dynamics of the system (2) can

be studied using the reduced system composed of the first 5 equations of the system (2) with Xe

replaced by 1 − Se − Sd − Re − Rd − Xd. This reduced system is given as follows

dSe /dt =  𝜇𝜇A1 + 𝛽𝛽Se(1 − Se − Sd − Re − Rd − Xd) − pSe + c𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Sd ,

dSd /dt =  𝜇𝜇A2 + 𝛽𝛽SdXd − (𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾𝜂𝜂 + 𝛿𝛿 + 𝜇𝜇)Sd + c𝜎𝜎𝛽𝛽SdRd + 𝜙𝜙Se ,

dRe /dt =  𝛽𝛽(1 − c)Re(1 − Se − Sd − Re − Rd − Xd) − (𝜏𝜏2 + 𝛾𝛾 + 𝜙𝜙 + 𝜇𝜇)Re − c𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Rd ,

dRd /dt =  𝛽𝛽(1 − c)RdXd − (𝜏𝜏2 + 𝛾𝛾𝜂𝜂 + 𝛿𝛿 + 𝜇𝜇)Rd − c𝜎𝜎𝛽𝛽SdRd + 𝜙𝜙Re ,

dXd /dt =  𝜇𝜇A3 + qSd − 𝛽𝛽SdXd − 𝛽𝛽(1 − c)RdXd + (𝜏𝜏2 + 𝛾𝛾𝜂𝜂)Rd − sXd + 𝜙𝜙(1 − Se − Re − Rd) ,

(3)

are carrying resistant strain undergoing dysbiosis Rd. The relationship between these two host types is

called antibiotic-induced dysbiosis and the rate 𝜙𝜙 = a𝜃𝜃, where a is the prevalence of antibiotic

exposure and 𝜃𝜃 is the rate at which antibiotic exposure will induce dysbiosis. Meanwhile, we also

assume that the microbiome recovers at a rate 𝛿𝛿. The proportions of admitted individuals that are

already colonized with sensitive bacteria and with a microbiome undergoing dysbiosis and those with

a balanced microbiome are given, respectively, by A2 and A1, while the proportion of admitted

uncolonized with a microbiome undergoing dysbiosis is given by A3. Table 2 provides a summary of

the additional parameters introduced in the proposed model. The range of values for these parameters

are taken from [9].

The system of equations describing the bacterial transmission in a hospital among individuals as

illustrated in Figure 2 is given below

dSe /dt =  𝜇𝜇A1 + 𝛽𝛽SeXe − 𝜅𝜅Se + 𝜎𝜎𝛽𝛽SeRe − 𝜎𝜎𝛽𝛽(1 − c)SeRe + 𝛿𝛿Sd − 𝜙𝜙Se − 𝜇𝜇Se ,

dSd /dt =  𝜇𝜇A2 + 𝛽𝛽SdXd − 𝜈𝜈Sd + 𝜎𝜎𝛽𝛽SdRd − 𝜎𝜎𝛽𝛽(1 − c)SdRd − 𝛿𝛿Sd + 𝜙𝜙Se − 𝜇𝜇Sd ,

dRe /dt =  𝛽𝛽(1 − c)ReXe − (𝜏𝜏2 + 𝛾𝛾)Re + 𝜎𝜎𝛽𝛽(1 − c)SeRe − 𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Rd − 𝜙𝜙Re − 𝜇𝜇Re ,
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dXe /dt =  𝜇𝜇(1 − A1 − A2 − A3) − 𝛽𝛽(1 − c)ReXe + (𝜏𝜏2 + 𝛾𝛾)Re − 𝛽𝛽SeXe + 𝜅𝜅Se + 𝛿𝛿Xd − 𝜙𝜙Xe − 𝜇𝜇Xe ,
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where 𝜅𝜅 = 𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾 and 𝜈𝜈 = 𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾𝜂𝜂. Similar to the system (1), the dynamics of the system (2) can

be studied using the reduced system composed of the first 5 equations of the system (2) with Xe

replaced by 1 − Se − Sd − Re − Rd − Xd. This reduced system is given as follows

dSe /dt =  𝜇𝜇A1 + 𝛽𝛽Se(1 − Se − Sd − Re − Rd − Xd) − pSe + c𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Sd ,

dSd /dt =  𝜇𝜇A2 + 𝛽𝛽SdXd − (𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾𝜂𝜂 + 𝛿𝛿 + 𝜇𝜇)Sd + c𝜎𝜎𝛽𝛽SdRd + 𝜙𝜙Se ,

dRe /dt =  𝛽𝛽(1 − c)Re(1 − Se − Sd − Re − Rd − Xd) − (𝜏𝜏2 + 𝛾𝛾 + 𝜙𝜙 + 𝜇𝜇)Re − c𝜎𝜎𝛽𝛽SeRe + 𝛿𝛿Rd ,
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where, for sake of  brevity, we introduce the following 
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where, for sake of brevity, we introduce the following notations p = 𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾 + 𝜙𝜙 + 𝜇𝜇, q = 𝜏𝜏1 + 𝜏𝜏2 +

𝛾𝛾𝜂𝜂 − 𝜙𝜙 and s = 𝛿𝛿 + 𝜇𝜇 + 𝜙𝜙. Our proposed model given in the system (2) is a generalization of the model

studied in [2] which is given in the system (1). The original model only has the variables X, S, and R

but in the proposed model, each of these groups of individuals is further subdivided based on whether

their microbiome is balanced (Xe, Se, and Re) or imbalanced due to dysbiosis (Xd, Sd, and Rd).

Moreover, the proposed model is new and is different from the original model studied in [2], nor from

the model in [9] where the idea of partitioning the individuals based on the status of their microbiome

was derived.

The solutions of the system (3) become biologically meaningful when the state variables are all

non-negative and are bounded. That is, we consider solutions in the region 𝛺𝛺 where 𝛺𝛺 ≔ {(Se, Sd, Re,

Rd, Xd) ∊ ℝ5 | Se, Sd, Re, Rd, Xd ≥ 0 and Se + Sd + Re + Rd + Xd ≤ 1}, and initial values (Se
0, Sd

0, Re
0, Rd

0,

Xd
0) ∊ 𝛺𝛺. In the next section, we show that 𝛺𝛺 is a positively invariant region under the flow the system

(3).

The goal of this paper is to analyze the dynamics of the proposed model given in the system (3)

in order to come up with insights and possible strategies to control antibiotic-resistant bacterial

transmission among individuals in a hospital considering dysbiosis. We do this by computing the

basic reproduction number, and determining how the equilibrium solutions of the model behave based

on this number. We also determine the most influential model parameter and then use it in the

numerical bifurcation analysis. These procedures then provide us with a threshold value for the most

influential parameter and a scheme to manage antibiotic resistance.

The paper is organized as follows. In the next section, we first show the positivity and

boundedness of solutions of the system (3). Next, we provide an expression for the basic reproduction

number, and discuss the possible equilibria of the proposed model. We then examine the local stability

of the equilibria and relate it to the basic reproduction number. The simulations that follow include
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𝛾𝛾𝜂𝜂 − 𝜙𝜙 and s = 𝛿𝛿 + 𝜇𝜇 + 𝜙𝜙. Our proposed model given in the system (2) is a generalization of the model

studied in [2] which is given in the system (1). The original model only has the variables X, S, and R

but in the proposed model, each of these groups of individuals is further subdivided based on whether

their microbiome is balanced (Xe, Se, and Re) or imbalanced due to dysbiosis (Xd, Sd, and Rd).

Moreover, the proposed model is new and is different from the original model studied in [2], nor from

the model in [9] where the idea of partitioning the individuals based on the status of their microbiome

was derived.
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The goal of this paper is to analyze the dynamics of the proposed model given in the system (3)

in order to come up with insights and possible strategies to control antibiotic-resistant bacterial

transmission among individuals in a hospital considering dysbiosis. We do this by computing the

basic reproduction number, and determining how the equilibrium solutions of the model behave based

on this number. We also determine the most influential model parameter and then use it in the

numerical bifurcation analysis. These procedures then provide us with a threshold value for the most

influential parameter and a scheme to manage antibiotic resistance.

The paper is organized as follows. In the next section, we first show the positivity and

boundedness of solutions of the system (3). Next, we provide an expression for the basic reproduction

number, and discuss the possible equilibria of the proposed model. We then examine the local stability

of the equilibria and relate it to the basic reproduction number. The simulations that follow include
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studied in [2] which is given in the system (1). The original model only has the variables X, S, and R

but in the proposed model, each of these groups of individuals is further subdivided based on whether

their microbiome is balanced (Xe, Se, and Re) or imbalanced due to dysbiosis (Xd, Sd, and Rd).

Moreover, the proposed model is new and is different from the original model studied in [2], nor from

the model in [9] where the idea of partitioning the individuals based on the status of their microbiome

was derived.

The solutions of the system (3) become biologically meaningful when the state variables are all

non-negative and are bounded. That is, we consider solutions in the region 𝛺𝛺 where 𝛺𝛺 ≔ {(Se, Sd, Re,

Rd, Xd) ∊ ℝ5 | Se, Sd, Re, Rd, Xd ≥ 0 and Se + Sd + Re + Rd + Xd ≤ 1}, and initial values (Se
0, Sd

0, Re
0, Rd

0,

Xd
0) ∊ 𝛺𝛺. In the next section, we show that 𝛺𝛺 is a positively invariant region under the flow the system

(3).

The goal of this paper is to analyze the dynamics of the proposed model given in the system (3)

in order to come up with insights and possible strategies to control antibiotic-resistant bacterial

transmission among individuals in a hospital considering dysbiosis. We do this by computing the

basic reproduction number, and determining how the equilibrium solutions of the model behave based

on this number. We also determine the most influential model parameter and then use it in the

numerical bifurcation analysis. These procedures then provide us with a threshold value for the most

influential parameter and a scheme to manage antibiotic resistance.

The paper is organized as follows. In the next section, we first show the positivity and

boundedness of solutions of the system (3). Next, we provide an expression for the basic reproduction

number, and discuss the possible equilibria of the proposed model. We then examine the local stability

of the equilibria and relate it to the basic reproduction number. The simulations that follow include
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but in the proposed model, each of these groups of individuals is further subdivided based on whether

their microbiome is balanced (Xe, Se, and Re) or imbalanced due to dysbiosis (Xd, Sd, and Rd).

Moreover, the proposed model is new and is different from the original model studied in [2], nor from

the model in [9] where the idea of partitioning the individuals based on the status of their microbiome
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transmission among individuals in a hospital considering dysbiosis. We do this by computing the
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numerical bifurcation analysis. These procedures then provide us with a threshold value for the most
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𝛾𝛾𝜂𝜂 − 𝜙𝜙 and s = 𝛿𝛿 + 𝜇𝜇 + 𝜙𝜙. Our proposed model given in the system (2) is a generalization of the model

studied in [2] which is given in the system (1). The original model only has the variables X, S, and R

but in the proposed model, each of these groups of individuals is further subdivided based on whether

their microbiome is balanced (Xe, Se, and Re) or imbalanced due to dysbiosis (Xd, Sd, and Rd).

Moreover, the proposed model is new and is different from the original model studied in [2], nor from

the model in [9] where the idea of partitioning the individuals based on the status of their microbiome

was derived.

The solutions of the system (3) become biologically meaningful when the state variables are all

non-negative and are bounded. That is, we consider solutions in the region 𝛺𝛺 where 𝛺𝛺 ≔ {(Se, Sd, Re,

Rd, Xd) ∊ ℝ5 | Se, Sd, Re, Rd, Xd ≥ 0 and Se + Sd + Re + Rd + Xd ≤ 1}, and initial values (Se
0, Sd

0, Re
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0,

Xd
0) ∊ 𝛺𝛺. In the next section, we show that 𝛺𝛺 is a positively invariant region under the flow the system

(3).

The goal of this paper is to analyze the dynamics of the proposed model given in the system (3)

in order to come up with insights and possible strategies to control antibiotic-resistant bacterial

transmission among individuals in a hospital considering dysbiosis. We do this by computing the

basic reproduction number, and determining how the equilibrium solutions of the model behave based

on this number. We also determine the most influential model parameter and then use it in the

numerical bifurcation analysis. These procedures then provide us with a threshold value for the most

influential parameter and a scheme to manage antibiotic resistance.

The paper is organized as follows. In the next section, we first show the positivity and

boundedness of solutions of the system (3). Next, we provide an expression for the basic reproduction

number, and discuss the possible equilibria of the proposed model. We then examine the local stability

of the equilibria and relate it to the basic reproduction number. The simulations that follow include

δ).

In the following examples, we consider 
two cases where each case uses a different set 
of  parameter values. In the first example, the 
reproduction number R0< 1, while in the second 
example, R0 > 1. We compute all the feasible 
equilibria of  system (3) in both examples. The 
parameter values used here are taken from [2, 9, 
14, 15], and are within the range of  acceptable 
values. 

Example 1. For system (3) with parameter 
values A1 = 0.5, β = 1, σ = 0.25, c = 0.05, μ = 0.1, 
a = 0.2, θ = 1, 

where, for sake of brevity, we introduce the following notations p = 𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾 + 𝜙𝜙 + 𝜇𝜇, q = 𝜏𝜏1 + 𝜏𝜏2 +

𝛾𝛾𝜂𝜂 − 𝜙𝜙 and s = 𝛿𝛿 + 𝜇𝜇 + 𝜙𝜙. Our proposed model given in the system (2) is a generalization of the model

studied in [2] which is given in the system (1). The original model only has the variables X, S, and R

but in the proposed model, each of these groups of individuals is further subdivided based on whether

their microbiome is balanced (Xe, Se, and Re) or imbalanced due to dysbiosis (Xd, Sd, and Rd).

Moreover, the proposed model is new and is different from the original model studied in [2], nor from

the model in [9] where the idea of partitioning the individuals based on the status of their microbiome

was derived.

The solutions of the system (3) become biologically meaningful when the state variables are all

non-negative and are bounded. That is, we consider solutions in the region 𝛺𝛺 where 𝛺𝛺 ≔ {(Se, Sd, Re,

Rd, Xd) ∊ ℝ5 | Se, Sd, Re, Rd, Xd ≥ 0 and Se + Sd + Re + Rd + Xd ≤ 1}, and initial values (Se
0, Sd

0, Re
0, Rd

0,

Xd
0) ∊ 𝛺𝛺. In the next section, we show that 𝛺𝛺 is a positively invariant region under the flow the system

(3).

The goal of this paper is to analyze the dynamics of the proposed model given in the system (3)

in order to come up with insights and possible strategies to control antibiotic-resistant bacterial

transmission among individuals in a hospital considering dysbiosis. We do this by computing the

basic reproduction number, and determining how the equilibrium solutions of the model behave based

on this number. We also determine the most influential model parameter and then use it in the

numerical bifurcation analysis. These procedures then provide us with a threshold value for the most

influential parameter and a scheme to manage antibiotic resistance.

The paper is organized as follows. In the next section, we first show the positivity and

boundedness of solutions of the system (3). Next, we provide an expression for the basic reproduction

number, and discuss the possible equilibria of the proposed model. We then examine the local stability

of the equilibria and relate it to the basic reproduction number. The simulations that follow include

 = 0.2, δ = 1/7, A2 = 0.2, 
τ1 = 0.20, τ2 = 0.19, γ = 1/30, η = 0.5, γη  = 1/60 
and A3 = 0.0001, the only feasible equilibrium is 
the resistance-free equilibrium E0 ≈ (0.184908, 



	 Chiang Mai J. Sci. 2023; 50(3)8

0.174261, 0, 0, 0.322535), which is obtained by 
solving the system (4).

Example 2. For system (3) with parameter values 
A1 = 0.5, β = 2, σ  = 0.25, c = 0.05, μ = 0.1, a = 0.2, 
θ = 1, 

where, for sake of brevity, we introduce the following notations p = 𝜏𝜏1 + 𝜏𝜏2 + 𝛾𝛾 + 𝜙𝜙 + 𝜇𝜇, q = 𝜏𝜏1 + 𝜏𝜏2 +

𝛾𝛾𝜂𝜂 − 𝜙𝜙 and s = 𝛿𝛿 + 𝜇𝜇 + 𝜙𝜙. Our proposed model given in the system (2) is a generalization of the model

studied in [2] which is given in the system (1). The original model only has the variables X, S, and R

but in the proposed model, each of these groups of individuals is further subdivided based on whether

their microbiome is balanced (Xe, Se, and Re) or imbalanced due to dysbiosis (Xd, Sd, and Rd).

Moreover, the proposed model is new and is different from the original model studied in [2], nor from

the model in [9] where the idea of partitioning the individuals based on the status of their microbiome

was derived.

The solutions of the system (3) become biologically meaningful when the state variables are all

non-negative and are bounded. That is, we consider solutions in the region 𝛺𝛺 where 𝛺𝛺 ≔ {(Se, Sd, Re,

Rd, Xd) ∊ ℝ5 | Se, Sd, Re, Rd, Xd ≥ 0 and Se + Sd + Re + Rd + Xd ≤ 1}, and initial values (Se
0, Sd

0, Re
0, Rd

0,

Xd
0) ∊ 𝛺𝛺. In the next section, we show that 𝛺𝛺 is a positively invariant region under the flow the system

(3).

The goal of this paper is to analyze the dynamics of the proposed model given in the system (3)

in order to come up with insights and possible strategies to control antibiotic-resistant bacterial

transmission among individuals in a hospital considering dysbiosis. We do this by computing the

basic reproduction number, and determining how the equilibrium solutions of the model behave based

on this number. We also determine the most influential model parameter and then use it in the

numerical bifurcation analysis. These procedures then provide us with a threshold value for the most

influential parameter and a scheme to manage antibiotic resistance.

The paper is organized as follows. In the next section, we first show the positivity and

boundedness of solutions of the system (3). Next, we provide an expression for the basic reproduction

number, and discuss the possible equilibria of the proposed model. We then examine the local stability

of the equilibria and relate it to the basic reproduction number. The simulations that follow include

 = 0.2, δ = 1/7, A2 = 0.2, τ1 = 0.37, τ2 = 0.10, 
γ = 1/30, η = 0.5, γη = 1/60 and A3 = 0.0001, 
we have two feasible equilibria, the resistance-
free equilibrium E0 ≈ (0.267025, 0.268652, 0, 
0, 0.228145) and the endemic equilibrium E1 ≈ 
(0.118810, 0.085551, 0.247677, 0.306076, 0.105170), 
obtained by solving the system (5).

Notice that the endemic equilibrium only 
exists in the second case where R0 > 1, while the 
resistance-free equilibrium exists in both cases. 
Moreover, observe that the third and fourth 
components of  E0  in the above examples are 
both zero. Since these components correspond 
to the individuals who are carrying resistant strain 
with balanced microbiome (Re) and individuals 
who are carrying resistant strain undergoing 
dysbiosis (Rd), respectively, the equilibrium E0  
reflects the state where we have the absence of  
antibiotic resistance. An asymptotically stable E0 
then means that antibiotic resistance eventually 
dies out. In contrast, the components Re and 
Rd are both nonzero in E1. That is, E1 reflects 
a state where antibiotic resistance is present, 
and an asymptotically stable E1 then means that 
antibiotic resistance persists in the system. The 
following section discusses the local asymptotic 
stability of  E0 and E1.

3. LOCAL STABILITY ANALYSIS OF THE EQUILIBRIUM 
SOLUTIONS

The local stability of  an equilibrium of  the 
proposed model given in the system (3) can be 
determined by performing a local stability analysis 
which studies the linearized system about the 
equilibrium. For a non-hyperbolic equilibrium 
E* of  the system (3), its local stability follows the 
stability of  the zero solution of  the corresponding 
linearized system 

means that antibiotic resistance persists in the system. The following section discusses the local

asymptotic stability of E0 and E1.

3. LOCAL STABILITY ANALYSIS OF THE EQUILIBRIUM SOLUTIONS

The local stability of an equilibrium of the proposed model given in the system (3) can be

determined by performing a local stability analysis which studies the linearized system about the

equilibrium. For a non-hyperbolic equilibrium E* of the system (3), its local stability follows the

stability of the zero solution of the corresponding linearized system

Ẋ = AX

where X = [x1, x2, x3, x4, x5]⊤ and the Jacobian matrix A = [ aij ] where the entries aij = 𝜕𝜕fi / 𝜕𝜕xj

evaluated at E* and the functions fi (x1, x2, x3, x4, x5) are given in the system (5) with (Se, Sd, Re, Rd, Xd)

= (x1, x2, x3, x4, x5).

The characteristic equation corresponding to the linearized system about the resistance-free

equilibrium E0 has the following form where the left-hand side factors into quadratic and cubic

polynomials

(𝜆𝜆2 + B1𝜆𝜆 + B2) (𝜆𝜆3 + B3𝜆𝜆2 + B4𝜆𝜆 + B5) = 0. (6)

From here, one can use the well-known Routh-Hurwitz criteria to provide conditions so that E0 is

locally asymptotically stable. For the scenario given in Example 1, the coefficients in the

characteristic equation (6) are B1 ≈ 0.368557, B2 ≈ 0.003867, B3 ≈ 1.149144, B4 ≈ 0.394552 and B5 ≈

0.037388. Since all these coefficients are positive and B3B4 > B5, the local asymptotic stability of the

resistance-free equilibrium E0 follows. Figure 3 shows the time-series plot of the state variables, using

the parameter values from Example 1, showing that E0 is locally asymptotically stable.

 = AX

where X = [x1, x2, x3, x4, x5]
┬ and the Jacobian 

matrix A = [ aij ] where the entries aij = ∂fi / ∂xj 

evaluated at E* and the functions fi (x1, x2, x3, x4, 
x5) are given in the system (5) with (Se, Sd, Re, Rd, 
Xd) = (x1, x2, x3, x4, x5).

The characteristic equation corresponding 
to the linearized system about the resistance-free 
equilibrium E0 has the following form where the 
left-hand side factors into quadratic and cubic 
polynomials 

(λ2 + B1λ + B2) (λ
3 + B3λ

2 + B4λ + B5) = 0.	     (6)

From here, one can use the well-known Routh-
Hurwitz criteria to provide conditions so that E0 is 
locally asymptotically stable. For the scenario given 
in Example 1, the coefficients in the characteristic 
equation (6) are B1 ≈ 0.368557, B2 ≈ 0.003867, B3 
≈ 1.149144, B4 ≈ 0.394552 and B5 ≈ 0.037388. 
Since all these coefficients are positive and B3B4  > 
B5, the local asymptotic stability of  the resistance-
free equilibrium E0 follows. Figure 3 shows the 
time-series plot of  the state variables, using the 
parameter values from Example 1, showing that 
E0 is locally asymptotically stable. 

We now move on with the local stability analysis 
of  the endemic equilibrium E1. The characteristic 
equation corresponding to the linearized system 
about E1 takes the following form 

λ5 + C1λ
4 + C2λ

3 + C3λ
2 + C4λ + C5 = 0.	      (7)

The Routh-Hurwitz criterion guarantees that 
the roots of  the above degree-5 polynomial 
equation all have negative real part if  and only 
if  all coefficients are positive and the following 
conditions are satisfied 

C1C2C3 > C3
2 + C1

2C4   and   (C1C4 − C5)(C1C2C3  
− C3

2 − C1
2C4) > C5(C1C2 − C3)

2 + C1C5
2.      (8)
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For the scenario given in Example 2, where E1 
exists, we obtain the following the coefficients of  the 
degree-5 polynomial in equation (7) C1 ≈ 2.369124, 
C2 ≈ 1.958186, C3 ≈ 0.685405, C4 ≈ 0.092361 and 
C5 ≈ 0.001990. It can be easily verified that these 
values satisfy the conditions derived from the 
Routh-Hurwitz criteria given in the inequalities (8). 
This implies the local asymptotic stability of  the 
endemic equilibrium E1 in this case. Figure 4 shows 
the time-series plot of  the state variables, using 
the parameter values from Example 2, showing 
that E1 is locally asymptotically stable. Meanwhile, 
using the parameter values given in Example 
2, we have B1 ≈ −0.075965, B2 ≈ −0.027984, 
B3 ≈ 1.384372, B4 ≈ 0.516922 and B5 ≈ 0.042861. 
Since B2 < 0, clearly the quadratic factor in the 
left-hand side of  equation (6) yields a positive root 
of  the characteristic equation and consequently, 
E0 is unstable for this case. We remark that for 
the case given in Example 2 where R0 > 1, E1 is 
locally asymptotically stable while E0 is unstable. 
In other words, Example 2 provides a scenario 
where antibiotic resistance persists.

4. NUMERICAL SIMULATION
As shown previously, the decline or persistence 

of  the antibiotic resistance depends on the value 
of  the reproduction number R0. In this section, 
we use numerical simulation to examine the 
relationship of  R0 to the model parameters firstly 
by performing a sensitivity analysis. We then use 
the most influential parameter, derived from the 
sensitivity analysis, as the bifurcation parameter 
in the numerical continuation and bifurcation 
analysis that follows. 

To analyze the sensitivity of  the reproduction 
number R0 on variations of  the parameter values, 
we perform a local sensitivity analysis using the 
so-called sensitivity index. For a given parameter 
k, the corresponding sensitivity index Sk of  R0 
is given by 

Sk   =   (k/R0)  ×  (∂R0/∂k)	                  (9)

where k /R0 is a normalizing factor, and the 
partial derivative in equation (9) is approximated 
as follows 

Figure 3. Plot of  time evolution of  state variables using parameter values from Example 1 showing 
that the resistance-free equilibrium E0 is locally asymptotically stable. The initial values used here are 
(Se

0, Sd
0, Re

0, Rd
0, Xe

0, Xd
0) = (0.1, 0.1, 0.2, 0.3, 0.2, 0.1).
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∂R0 /∂k   ≈   [R0(t, k + r) − R0(t, k)] / r       (10)

where k is the value of  a parameter, r is the 
parameter variation and t is time [16].

Figure 5 shows the sensitivity index ranking 
using the parameter set in Example 2 for different 
values of  r. Recall that r is the parameter variation 
used in the approximation for the partial derivative 
in expression (10). The most influential parameter 
is τ1, which is the treatment rate of  drug 1. This 
is followed by β, the primary transmission rate 
(colonization) which brings positive change in 
R0 and μ, the patient turnover rate, which has 
a negative effect on R0. The parameters η, the 
resource competition, γη, the immune-response 
clearance rate of  bacteria undergoing dysbiosis, 
and A3, the proportion of  admitted uncolonized 
with microbiome undergoing dysbiosis, have the 
least effect on R0.

We now examine the dynamical behavior of  
the proposed model varying the most influential 
parameter τ1. We carry out a one-parameter 

numerical continuation and bifurcation analysis 
using MatCont [17, 18]. The development and 
maintenance of  this interactive graphical software 
package are led by W. Govaerts, Y.A. Kuznetsov 
and H.G.E. Meijer, and is used together with 
the Matlab platform in studying, particularly, 
continuous parameterized dynamical systems 
(ODEs). MatCont can compute branches of  
equilibria and limit-cycle solutions, and detect 
various steady-state and limit-cycle bifurcations.

Figure 6 shows branches of  equilibrium 
solutions of  the proposed model when the main 
parameter τ1 is varied. Here, the graph of  the portion 
of  individuals carrying the antibiotic-resistant 
bacteria Re in terms of  the treatment rate of  drug 
1 parameter τ1 is presented. The resistance-free-
equilibrium branch (horizontal line) has parts that 
are stable and parts that are unstable parts. These 
are shown in solid and dashed lines, respectively. 
The stability switch along this branch occurs at 
τ1 = τ1

* ≈ 0.11606 where the endemic-equilibrium 
branch (curve) bifurcates. Note that for τ1 < τ1

*, 

Figure 4. Plot of  time evolution of  state variables using parameter values from Example 2 showing 
that the endemic equilibrium E1 is locally asymptotically stable. The initial values used here are (Se

0, 
Sd

0, Re
0, Rd

0, Xe
0, Xd

0) = (0.1, 0.1, 0.2, 0.3, 0.2, 0.1). 
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the resistance-free equilibrium solely exists and 
is locally asymptotically stable. In contrast, when 
τ1 > τ1

*, the resistance-free equilibrium switches 
to instability, and its stability is passed on to the 
endemic equilibrium that bifurcated when τ1= τ1

*.
It is also worth noting that the case when τ1  = τ1

* 
is equivalent to the case when the reproduction 
number R0 = 1. Moreover, the case when τ1 < τ1

*  
corresponds to the case when R0 < 1 where the 
antibiotic resistance dies out. Similarly, the case 
when τ1 > τ1

*  corresponds to the case when R0 > 1 
where the antibiotic resistance persists. Knowing 
the threshold value τ1

* is significant since it allows 
us to strategize when treating using drug 1 in 
order to control the antibiotic-resistant bacterial 
transmission in our setting. 

5. SUMMARY AND CONCLUSION
The antibiotic-resistant bacterial transmission 

in hospital environments has been the focus of  

several previous researches. However, the aspect and 
contribution of  antibiotic-induced dysbiosis was 
not considered in the existing literature. Antibiotics 
impact the human intestinal microbiome for it 
unintentionally affects the needed gut microbiota 
diversity which are fundamental drivers of  
health and disease in humans. This unintentional 
destabilization of  a healthy human microbiome 
results in microbial imbalance called dysbiosis. 

In this current work, we proposed and 
analyzed a model of  antibiotic-resistant bacterial 
transmission among individuals in a locale, e.g. 
hospitals, considering dysbiosis with the goal of  
coming up with insights and control strategies. 
The possible equilibria of  the model system 
include the resistance-free equilibrium and the 
endemic equilibrium. We examined the behavior 
of  these equilibria using local stability analysis 
and its relation to a threshold value which is 
the basic reproduction number. The stability of  

Figure 5. Sensitivity index ranking using different values of  r showing that τ1, the drug 1 treatment 
rate, is the most influential parameter.
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the resistance-free equilibrium means that the 
antibiotic resistance dies out, while the stability of  
the endemic equilibrium implies the persistence 
of  antibiotic-resistant bacteria. We also performed 
a local sensitivity analysis, which determined 
the drug 1 treatment rate as the most influential 
parameter. This parameter is then used in the 
numerical continuation where a threshold value of  
this parameter was obtained where the antibiotic 
resistance persists. These results provide insights 
on how to strategize, using the most influential 
parameter or possibly consider other influential 
parameters, to control antibiotic-resistant bacterial 
transmission in this setting.
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