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ABSTRACT
  Dynamic Mode Decomposition (DMD) with time delay embedding is used to predict dynamic 

patterns in univariate time series. An important pattern that can be extracted using DMD is the trend 
or global change in a time series which is useful for producing reliable forecast. DMD utilizes the 
computationally effi cient singular value decomposition (SVD) to produce a low rank approximation 
of  the linear operator that brings about the dynamic patterns in the time series. Trend in the time 
series is translated as dynamic modes of  the operator with low frequencies. The time evolution of  this 
low frequency pattern produces forecast of  the time series. In this paper, we outline the strategies for 
extracting trend component from COVID-19 time series of  Malaysia. It is discovered that, other than 
identifying modes with slow varying frequencies, we need to also resolve the time stamp delay, so that 
mean-square error of  the reconstructed time series is minimal. Information of  the magnitude and 
phase of  DMD modes are useful to identify persistent patterns and remove nonstationary ones. We 
compare the performance of  DMD with another SVD-based method which is the singular spectrum 
analysis (SSA) and our results highlight certain fundamental difference between these two methods. 
The forecasts from SSA tend to lean towards the direction of  maximum variance, producing low 
reconstruction error but slow to detect sudden changes in the time series. On the other hand, forecasts 
from DMD captures the phases of  dominant modes that dictates the overall global pattern, hence 
providing a better prediction of  future dynamics of  the time series.
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1. INTRODUCTION 
The study of  time series analysis includes 

extracting trend or information about the 
time series global change to produce a reliable 
forecast and it is widely applied in various fi eld 
such as fi nance [1], biomedical engineering [2-4], 
geophysical study [5], and epidemiological study 
[6, 7]. Many methods for time series analysis 
rely on decomposition techniques to separate 

different variations in a series which are classifi ed 
as trends, seasonality and/or cyclic changes and 
‘irregular’ fl uctuations often termed as ‘noise’. 
Examples of  the decomposition methods are 
Singular Spectrum Analysis (SSA) [2, 6, 8], Time 
Series Decomposition [9], and Auto Regressive 
Integrated Moving Average (ARIMA) [10].
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Another type of  decomposition technique that 
shares similar features with SSA is the Dynamic Mode 
Decomposition (DMD). It was first introduced in 
the fluid dynamics community [11, 12] to uncover 
spatio-temporal coherent structures of  complex 
flows but has since evolved into other areas of  
applications [13-22]. It was shown in [12] that 
DMD approximates the spectra of  the Koopman 
operator [23] which is an infinite-dimensional 
linear operator that represents nonlinear and 
finite-dimensional dynamics without linearization. 
The modes and eigenvalues of  the Koopman 
operator capture future evolution of  observables 
of  a dynamical system. The use of  its data-driven 
spectral decomposition and model reduction was 
first proposed in [24]. This approach captures 
intrinsic dynamics that is observed over time 
thereby allowing reduced order DMD modes to 
be computed without relying on any underlying 
assumptions on physical laws. Like SSA, it has 
the ability to decompose signals into interpretable 
components such as trends, oscillation, and noise. 
In terms of  formulation, DMD has the ability to 
capture frequency components which allows the 
extraction of  information regarding the growth/
decay in the data as well as computing the modes 
that are associated with complex eigenvalues.

Although DMD is more popularly used for 
multi-dimensional, it can also be used on univariate 
time series by the use of  time delay embedding. 
Delay embedding is a key methodology for 
predicting and forecasting of  complex dynamical 
behavior [25,26]. A complete treatment of  DMD 
for univariate time series can be found in [27] and 
various other applications [28, 29]. In this paper, 
we investigate the applicability of  DMD with time 
delay embedding on the COVID-19 time series of  
Malaysia. The objective of  the investigation is to 
determine the strategies for extracting global trends 
in the time series to produce reliable forecasts. 
In our previous work [6, 7], we investigated the 
capabilities of  SSA in the analysis and forecasting 
of  COVID-19 Pandemic in Malaysia. Since 
both SSA and DMD utilize the singular value 

decomposition (SVD) to separate components in 
a time series, we aim to highlight the fundamental 
difference in the attributes of  these methods. The 
remainder of  the paper is structured as follows: 
First we describe the methodology behind the 
DMD algorithm. Then we explain the experimental 
design, strategies and results before we conclude 
the paper with a discussion.

2. METHODOLOGY
2.1 Infectious Disease Data and Nonlinear 
Dynamical System

Mathematical modeling of  the transmission of  
infectious disease has a long and varied history, as 
indicated by the great number of  epidemiological 
models developed to explain the spread of  a wide 
range of  diseases [30]. These models are in the 
form of  dynamical system models and frequently 
include nonlinear components to describe the 
observed occurrences in a nonlinear system. To 
draw the connection between infectious disease 
data and nonlinear dynamical system, we begin 
by considering a nonlinear discrete dynamical 
system in its general form as follows:

connection between infectious disease data and nonlinear dynamical system, we begin by considering 

a nonlinear discrete dynamical system in its general form as follows: 

 𝐱𝐱𝑛𝑛+1 = ℱ(𝐱𝐱𝑛𝑛, 𝛉𝛉),     (1) 

where 𝑛𝑛 denotes the discrete time step, ℱ(𝑥𝑥𝑛𝑛, 𝜃𝜃) is a mapping that maps the current state vector 𝑥𝑥𝑛𝑛 to 

its future state 𝐱𝐱𝑛𝑛+1 and 𝛉𝛉 is a vector of system parameters. Most compartmental epidemic models can 

be represented in the form as in Eqn. (1), where a typical state variable is 𝐱𝐱𝑛𝑛 = (𝑆𝑆𝑛𝑛, 𝐼𝐼𝑛𝑛, 𝑅𝑅𝑛𝑛, … )𝑇𝑇 where 

𝑆𝑆𝑛𝑛 is the number of susceptible cases, 𝐼𝐼𝑛𝑛 the number of infected cases, 𝑅𝑅𝑛𝑛 is the number of recovered 

cases, etc. In an epidemic model,  ℱ represents the physical rules that govern how disease propagates 

and these rules depend on certain epidemic parameters 𝛉𝛉 = (𝛽𝛽, 𝛾𝛾, … )𝑇𝑇  where 𝛽𝛽 and 𝛾𝛾 could be the 

transmission and removal rate of the disease respectively.  

 A more practical view of Eqn. (1) is to describe a dynamical system from the point of view of 

observables, or measurements of 𝐱𝐱𝑛𝑛. Let 𝑔𝑔 maps 𝐱𝐱𝑛𝑛 to a scalar valued measurement 𝑔𝑔(𝐱𝐱𝑛𝑛). Then, 

instead of Eqn. (1), we consider 

 𝑔𝑔(𝐱𝐱𝑛𝑛+1) = 𝑔𝑔(ℱ(𝐱𝐱𝑛𝑛)).     (2) 

To predict future values of the measurements, linear operator known as Koopman operator is used. A 

Koopman operator defines a rule for mapping the current measurement 𝑔𝑔(𝐱𝐱𝑛𝑛) to a future measurement 

𝑔𝑔(𝐱𝐱𝑛𝑛+1). Let 𝐴𝐴  be a Koopman operator for Eqn. (2), then  

 𝐴𝐴𝐴𝐴(𝐱𝐱𝑛𝑛) = 𝑔𝑔(𝐱𝐱𝑛𝑛+1) = 𝑔𝑔(ℱ(𝐱𝐱𝑛𝑛)).     (3) 

Now, let’s consider a vector-valued measurement 𝐲𝐲𝑛𝑛 = 𝐠𝐠(𝐱𝐱𝑛𝑛) = (𝑔𝑔1(𝐱𝐱𝑛𝑛), 𝑔𝑔2(𝐱𝐱𝑛𝑛), … , 𝑔𝑔𝑚𝑚(𝐱𝐱𝑛𝑛))𝑇𝑇, 

where 𝑚𝑚 is the number of measurements. In the case of epidemic data, 𝐲𝐲𝑛𝑛 can be a set of measurements 

for the number of daily cases from the start of the epidemic up to day 𝑛𝑛. The linear nature of the 

Koopman operator 𝐴𝐴 allows us to represent the future measurement 𝐲𝐲𝑛𝑛+1 as an expansion of the form 

𝐲𝐲𝑛𝑛+1 = 𝐴𝐴𝐲𝐲𝑛𝑛 = ∑ 𝜆𝜆𝑖𝑖
𝑛𝑛𝜑𝜑𝑖𝑖(𝐱𝐱𝑛𝑛)

∞

𝑖𝑖=1
𝐯𝐯𝑖𝑖, 

 
(4) 

 

where (𝜆𝜆𝑖𝑖, 𝜑𝜑𝑖𝑖(𝐱𝐱𝑛𝑛)) is the eigenvalue-eigenfunction pair of 𝐴𝐴 associated with measurement 𝐲𝐲𝑛𝑛, and 𝐯𝐯𝑖𝑖 

are the Koopman modes of the map ℱ [12]. 
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connection between infectious disease data and nonlinear dynamical system, we begin by considering 

a nonlinear discrete dynamical system in its general form as follows: 

 𝐱𝐱𝑛𝑛+1 = ℱ(𝐱𝐱𝑛𝑛, 𝛉𝛉),     (1) 

where 𝑛𝑛 denotes the discrete time step, ℱ(𝑥𝑥𝑛𝑛, 𝜃𝜃) is a mapping that maps the current state vector 𝑥𝑥𝑛𝑛 to 

its future state 𝐱𝐱𝑛𝑛+1 and 𝛉𝛉 is a vector of system parameters. Most compartmental epidemic models can 

be represented in the form as in Eqn. (1), where a typical state variable is 𝐱𝐱𝑛𝑛 = (𝑆𝑆𝑛𝑛, 𝐼𝐼𝑛𝑛, 𝑅𝑅𝑛𝑛, … )𝑇𝑇 where 

𝑆𝑆𝑛𝑛 is the number of susceptible cases, 𝐼𝐼𝑛𝑛 the number of infected cases, 𝑅𝑅𝑛𝑛 is the number of recovered 

cases, etc. In an epidemic model,  ℱ represents the physical rules that govern how disease propagates 

and these rules depend on certain epidemic parameters 𝛉𝛉 = (𝛽𝛽, 𝛾𝛾, … )𝑇𝑇  where 𝛽𝛽 and 𝛾𝛾 could be the 

transmission and removal rate of the disease respectively.  

 A more practical view of Eqn. (1) is to describe a dynamical system from the point of view of 

observables, or measurements of 𝐱𝐱𝑛𝑛. Let 𝑔𝑔 maps 𝐱𝐱𝑛𝑛 to a scalar valued measurement 𝑔𝑔(𝐱𝐱𝑛𝑛). Then, 

instead of Eqn. (1), we consider 

 𝑔𝑔(𝐱𝐱𝑛𝑛+1) = 𝑔𝑔(ℱ(𝐱𝐱𝑛𝑛)).     (2) 

To predict future values of the measurements, linear operator known as Koopman operator is used. A 

Koopman operator defines a rule for mapping the current measurement 𝑔𝑔(𝐱𝐱𝑛𝑛) to a future measurement 

𝑔𝑔(𝐱𝐱𝑛𝑛+1). Let 𝐴𝐴  be a Koopman operator for Eqn. (2), then  

 𝐴𝐴𝐴𝐴(𝐱𝐱𝑛𝑛) = 𝑔𝑔(𝐱𝐱𝑛𝑛+1) = 𝑔𝑔(ℱ(𝐱𝐱𝑛𝑛)).     (3) 

Now, let’s consider a vector-valued measurement 𝐲𝐲𝑛𝑛 = 𝐠𝐠(𝐱𝐱𝑛𝑛) = (𝑔𝑔1(𝐱𝐱𝑛𝑛), 𝑔𝑔2(𝐱𝐱𝑛𝑛), … , 𝑔𝑔𝑚𝑚(𝐱𝐱𝑛𝑛))𝑇𝑇, 

where 𝑚𝑚 is the number of measurements. In the case of epidemic data, 𝐲𝐲𝑛𝑛 can be a set of measurements 

for the number of daily cases from the start of the epidemic up to day 𝑛𝑛. The linear nature of the 

Koopman operator 𝐴𝐴 allows us to represent the future measurement 𝐲𝐲𝑛𝑛+1 as an expansion of the form 

𝐲𝐲𝑛𝑛+1 = 𝐴𝐴𝐲𝐲𝑛𝑛 = ∑ 𝜆𝜆𝑖𝑖
𝑛𝑛𝜑𝜑𝑖𝑖(𝐱𝐱𝑛𝑛)
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 The relationship in Eqn. (4) provides a direct way of representing measurements of infectious 

disease data in terms of the Koopman decomposition which consists of the eigenvalues 𝜆𝜆𝑖𝑖, eigenvectors 

𝜑𝜑𝑖𝑖(𝑥𝑥𝑛𝑛), and 𝐯𝐯𝑖𝑖. But it is only feasible if a finite-dimensional approximation of the Koopman operator 

𝐴𝐴 is available. Central to the dynamic mode decomposition [12, 13] is the low rank approximation of 

the Koopman operator using measurement data and computing an approximation to (4) as a finite 

expansion. 

2.2 Dynamic mode decomposition 

Starting with a collection of 𝐿𝐿 consecutive snapshots of measurements 𝐲𝐲𝑛𝑛, 𝑛𝑛 = 1,2, … , 𝐿𝐿, two different 

matrices can be constructed as follows: 

𝑌𝑌1 = [𝐲𝐲1, 𝐲𝐲2, … , 𝐲𝐲𝐿𝐿−1],
 𝑌𝑌2 = [𝐲𝐲2, 𝐲𝐲3, … , 𝐲𝐲𝐿𝐿].      

     
(4) 

The Koopman matrix 𝐴𝐴  advances each snapshot 𝐲𝐲𝑛𝑛 by a single time step into the corresponding future 

measurement 𝐲𝐲𝑛𝑛 so that the evolution of all 𝐿𝐿 snapshots is given as 

 𝑌𝑌2 = 𝐴𝐴𝑌𝑌1.     (6) 

A best approximation of 𝐴𝐴 in the least-squares sense is obtained by minimizing the Frobenius norm 

 ‖𝑌𝑌2 − 𝐴𝐴𝑌𝑌1‖𝐹𝐹     (7) 

To use DMD as a prediction tool, delay embedding is used [30]. In particular, for univariate time series, 

the snapshots 𝐲𝐲𝑛𝑛 take the form of time delayed samples 𝐲𝐲𝑛𝑛 = (𝑦𝑦𝑛𝑛, 𝑦𝑦𝑛𝑛+1, … , 𝑦𝑦𝑛𝑛+𝐾𝐾−1)𝑇𝑇 [27] where, for a 

time series of length 𝑙𝑙, 𝐾𝐾 = 𝑙𝑙 − 𝐿𝐿 + 1. The optimal construction of matrix 𝐴𝐴 for the linear 

approximation in Eq. (6), is given by 

 𝐴𝐴 = 𝑌𝑌2𝑌𝑌1
†,     (8) 

where (. )† denotes the "Moore-Penrose" pseudoinverse. Let 𝑌𝑌1 = 𝑈𝑈Σ𝑉𝑉∗ be the Singular Value 

Decomposition (SVD) of 𝑌𝑌1, with ( ∗ ) denotes the conjugate transpose, 𝑈𝑈 ∈ ℂ𝐾𝐾×(𝐿𝐿−1), Σ ∈

ℂ(𝐿𝐿−1)×(𝐿𝐿−1) and 𝑉𝑉 ∈ ℂ(𝐿𝐿−1)×(𝐿𝐿−1). Then 𝑌𝑌1
† = 𝑉𝑉Σ−1𝑈𝑈∗, which gives  

 𝐴𝐴 = 𝑌𝑌2𝑉𝑉Σ−1𝑈𝑈∗.     (9) 
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𝜑𝜑𝑖𝑖(𝑥𝑥𝑛𝑛), and 𝐯𝐯𝑖𝑖. But it is only feasible if a finite-dimensional approximation of the Koopman operator 

𝐴𝐴 is available. Central to the dynamic mode decomposition [12, 13] is the low rank approximation of 

the Koopman operator using measurement data and computing an approximation to (4) as a finite 

expansion. 

2.2 Dynamic mode decomposition 

Starting with a collection of 𝐿𝐿 consecutive snapshots of measurements 𝐲𝐲𝑛𝑛, 𝑛𝑛 = 1,2, … , 𝐿𝐿, two different 

matrices can be constructed as follows: 
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The Koopman matrix 𝐴𝐴  advances each snapshot 𝐲𝐲𝑛𝑛 by a single time step into the corresponding future 
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is big which is 𝐾𝐾 × 𝐾𝐾. A low rank approximation of 𝐴𝐴 is obtained on the subspace spanned by the 

orthogonal singular vectors 𝑈𝑈 of 𝑌𝑌1, which is [31] 

 𝐴̃𝐴 = 𝑈𝑈∗𝑌𝑌2𝑉𝑉Σ−1 .   (10) 

The dynamic modes of the time series reconstruction are made up of the eigenvalues and the 

eigenvectors of 𝐴̃𝐴. To achieve these, the eigendecomposition of 𝐴̃𝐴 is computed as follows: 

 𝐴̃𝐴𝑊𝑊 = 𝑊𝑊Λ,   (11) 
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It has been shown in [31] that the columns of Ψ (i.e. the DMD modes) are the eigenvectors of the high-

dimensional matrix 𝐴𝐴 that corresponds to the eigenvalues in Λ. 
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Given the DMD modes in Eqn. (12), a complete reconstruction of the time series is given by 

 
𝐲𝐲𝑛𝑛 = ∑ Ψ𝑖𝑖𝜆𝜆𝑖𝑖

𝑛𝑛−1𝑣𝑣𝑖𝑖

𝐿𝐿−1

𝑖𝑖=1
= ΨΛ𝑛𝑛−1𝐯𝐯, 
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where Ψ𝑖𝑖 is the 𝑖𝑖th column of Ψ, and 𝐯𝐯 is the initial amplitude of the dynamic modes obtained from the 

multiplication of inverse DMD modes and the first lagged vector, i.e, 𝐯𝐯 = Ψ−1𝐲𝐲1. Based on Eqn. (13), 
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𝐿𝐿−1𝑣𝑣1 
𝑣𝑣2 𝜆𝜆2

1𝑣𝑣2 𝜆𝜆2
2𝑣𝑣2 ⋯ 𝜆𝜆2
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⋮ ⋮ ⋮ ⋮ ⋮

𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1
1 𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1

2 𝑣𝑣𝐿𝐿−1 ⋯ 𝜆𝜆𝐿𝐿−1
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= ΨT𝑟𝑟, 
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where the (𝐿𝐿 − 1) × 𝐿𝐿 matrix T describes the time dynamic of the DMD modes.  
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produces a forecast of the time dynamic into 𝐹𝐹 time steps ahead and this is 
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It has been shown in [31] that the columns of Ψ (i.e. the DMD modes) are the eigenvectors of the high-

dimensional matrix 𝐴𝐴 that corresponds to the eigenvalues in Λ. 

2.2.1 DMD reconstruction, forecasting and trend extraction  

Given the DMD modes in Eqn. (12), a complete reconstruction of the time series is given by 

 
𝐲𝐲𝑛𝑛 = ∑ Ψ𝑖𝑖𝜆𝜆𝑖𝑖

𝑛𝑛−1𝑣𝑣𝑖𝑖

𝐿𝐿−1

𝑖𝑖=1
= ΨΛ𝑛𝑛−1𝐯𝐯, 

   
(13) 

where Ψ𝑖𝑖 is the 𝑖𝑖th column of Ψ, and 𝐯𝐯 is the initial amplitude of the dynamic modes obtained from the 

multiplication of inverse DMD modes and the first lagged vector, i.e, 𝐯𝐯 = Ψ−1𝐲𝐲1. Based on Eqn. (13), 

a reconstruction of the matrix 𝑌𝑌2 in Eqn. (5) is given by, 

𝑌𝑌𝑟𝑟 = Ψ
[
 
 
 𝑣𝑣1 𝜆𝜆1

1𝑣𝑣1 𝜆𝜆1
2𝑣𝑣1 ⋯ 𝜆𝜆1

𝐿𝐿−1𝑣𝑣1 
𝑣𝑣2 𝜆𝜆2

1𝑣𝑣2 𝜆𝜆2
2𝑣𝑣2 ⋯ 𝜆𝜆2

𝐿𝐿−1𝑣𝑣2 
⋮ ⋮ ⋮ ⋮ ⋮

𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1
1 𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1

2 𝑣𝑣𝐿𝐿−1 ⋯ 𝜆𝜆𝐿𝐿−1
𝐿𝐿−1𝑣𝑣𝐿𝐿−1 ]

 
 
 
= ΨT𝑟𝑟, 

  (14) 

where the (𝐿𝐿 − 1) × 𝐿𝐿 matrix T describes the time dynamic of the DMD modes.  

 It is now apparent that the evolution of the DMD modes for 𝑛𝑛 = 𝐿𝐿 + 1, 𝐿𝐿 + 2,… , 𝐿𝐿 + 𝐹𝐹, 

produces a forecast of the time dynamic into 𝐹𝐹 time steps ahead and this is 

 
produces a forecast of  the time dynamic into 

Eq. (9) provides the full-rank matrix 𝐴𝐴, however, the computation is expensive as the size of the matrix 

is big which is 𝐾𝐾 × 𝐾𝐾. A low rank approximation of 𝐴𝐴 is obtained on the subspace spanned by the 

orthogonal singular vectors 𝑈𝑈 of 𝑌𝑌1, which is [31] 

 𝐴̃𝐴 = 𝑈𝑈∗𝑌𝑌2𝑉𝑉Σ−1 .   (10) 

The dynamic modes of the time series reconstruction are made up of the eigenvalues and the 

eigenvectors of 𝐴̃𝐴. To achieve these, the eigendecomposition of 𝐴̃𝐴 is computed as follows: 

 𝐴̃𝐴𝑊𝑊 = 𝑊𝑊Λ,   (11) 

where the columns of  𝑊𝑊 are the eigenvectors and Λ is a diagonal matrix containing the corresponding 

eigenvalues of 𝐴̃𝐴 matrix. The DMD modes are reconstructed using the eigenvectors 𝑊𝑊 according to 

 Ψ = 𝑌𝑌2𝑉𝑉Σ−1𝑊𝑊.   (12) 

It has been shown in [31] that the columns of Ψ (i.e. the DMD modes) are the eigenvectors of the high-

dimensional matrix 𝐴𝐴 that corresponds to the eigenvalues in Λ. 

2.2.1 DMD reconstruction, forecasting and trend extraction  

Given the DMD modes in Eqn. (12), a complete reconstruction of the time series is given by 

 
𝐲𝐲𝑛𝑛 = ∑ Ψ𝑖𝑖𝜆𝜆𝑖𝑖

𝑛𝑛−1𝑣𝑣𝑖𝑖

𝐿𝐿−1

𝑖𝑖=1
= ΨΛ𝑛𝑛−1𝐯𝐯, 

   
(13) 

where Ψ𝑖𝑖 is the 𝑖𝑖th column of Ψ, and 𝐯𝐯 is the initial amplitude of the dynamic modes obtained from the 

multiplication of inverse DMD modes and the first lagged vector, i.e, 𝐯𝐯 = Ψ−1𝐲𝐲1. Based on Eqn. (13), 

a reconstruction of the matrix 𝑌𝑌2 in Eqn. (5) is given by, 

𝑌𝑌𝑟𝑟 = Ψ
[
 
 
 𝑣𝑣1 𝜆𝜆1

1𝑣𝑣1 𝜆𝜆1
2𝑣𝑣1 ⋯ 𝜆𝜆1

𝐿𝐿−1𝑣𝑣1 
𝑣𝑣2 𝜆𝜆2

1𝑣𝑣2 𝜆𝜆2
2𝑣𝑣2 ⋯ 𝜆𝜆2

𝐿𝐿−1𝑣𝑣2 
⋮ ⋮ ⋮ ⋮ ⋮

𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1
1 𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1

2 𝑣𝑣𝐿𝐿−1 ⋯ 𝜆𝜆𝐿𝐿−1
𝐿𝐿−1𝑣𝑣𝐿𝐿−1 ]

 
 
 
= ΨT𝑟𝑟, 

  (14) 

where the (𝐿𝐿 − 1) × 𝐿𝐿 matrix T describes the time dynamic of the DMD modes.  

 It is now apparent that the evolution of the DMD modes for 𝑛𝑛 = 𝐿𝐿 + 1, 𝐿𝐿 + 2,… , 𝐿𝐿 + 𝐹𝐹, 

produces a forecast of the time dynamic into 𝐹𝐹 time steps ahead and this is  

time steps ahead and this is

𝑌𝑌𝑓𝑓 = Ψ
[
 
 
 𝜆𝜆1

𝐿𝐿𝑣𝑣1 𝜆𝜆1
𝐿𝐿+1𝑣𝑣1 𝜆𝜆1

𝐿𝐿+2𝑣𝑣1 ⋯ 𝜆𝜆1
𝐿𝐿+𝐹𝐹−1𝑣𝑣1 

𝜆𝜆2
𝐿𝐿𝑣𝑣2 𝜆𝜆2

𝐿𝐿+1𝑣𝑣2 𝜆𝜆2
𝐿𝐿+2𝑣𝑣2 ⋯ 𝜆𝜆2

𝐿𝐿+𝐹𝐹−1𝑣𝑣2 
⋮ ⋮ ⋮ ⋮ ⋮

𝜆𝜆𝐿𝐿−1
𝐿𝐿 𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1

𝐿𝐿+1𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1
𝐿𝐿+2𝑣𝑣𝐿𝐿−1 ⋯ 𝜆𝜆𝐿𝐿−1

𝐿𝐿+𝐹𝐹−1𝑣𝑣𝐿𝐿−1 ]
 
 
 
= ΨT𝑓𝑓. 

   
 

(15) 

Combining the reconstruction in Eqn. (14) and the forecast in Eqn. (15) gives 

𝑌𝑌 = [𝑌𝑌𝑟𝑟 𝑌𝑌𝑓𝑓] = Ψ[𝑇𝑇𝑟𝑟 𝑇𝑇𝑓𝑓]. (16) 

The reconstruction in Eqn. (14) can be grouped further into several sub-components such as 

trend, periodic component, and noise. To elucidate further, we write Eqn. (14) as a sum of three groups 

of matrices as follows: 

𝑌𝑌𝑟𝑟 = ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺1

+ ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺2

+ ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺3

 

= 𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑌̂𝑌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑌̂𝑌𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 

  
 
 
 (17) 

where 𝐺𝐺1 is the group of indices corresponds to trend component,  𝐺𝐺2 is the group of indices corresponds 

to periodic components, and 𝐺𝐺3 is the group of indices corresponds to minor components and noise. 

When constructing the groups, it is useful to consider the frequencies of the DMD modes which are 

defined as 

 𝜔𝜔𝑗𝑗 =
ln (𝜆𝜆𝑗𝑗)

𝛿𝛿𝛿𝛿 , ∀ 𝑗𝑗 ∈ {1,2,… , 𝐿𝐿 − 1}.    
(18) 

Here 𝛿𝛿𝛿𝛿 refers to the lag between samples of the time series. The real part of 𝜔𝜔𝑖𝑖 is responsible for the 

growth/decay of the DMD modes while the imaginary parts bring about the oscillatory behaviour. For 

trend extraction, we look for sub-component(s) with low oscillation, i.e. the 𝑗𝑗-th sub-component 

Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗 is a trend if 𝑖𝑖𝑖𝑖(𝜔𝜔𝑗𝑗) ≈ 0. Then, the evolution of the trend component for 𝑛𝑛 = 𝐿𝐿 + 1, 𝐿𝐿 +

2,… , 𝐿𝐿 + 𝐹𝐹, produces a forecast of the time dynamic of trend in the time series into 𝐹𝐹 time steps ahead 

given by 

𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑓𝑓 = Ψ𝐺𝐺1𝑇𝑇𝐺𝐺1

𝑓𝑓 , (19) 

where Ψ𝐺𝐺1consists of the columns of Ψ associated with 𝐺𝐺1, while 𝑇𝑇𝐺𝐺1
𝑓𝑓 consists of the rows of 𝑇𝑇𝑓𝑓 

associated with 𝐺𝐺1. 

 

 

𝑌𝑌𝑓𝑓 = Ψ
[
 
 
 𝜆𝜆1

𝐿𝐿𝑣𝑣1 𝜆𝜆1
𝐿𝐿+1𝑣𝑣1 𝜆𝜆1

𝐿𝐿+2𝑣𝑣1 ⋯ 𝜆𝜆1
𝐿𝐿+𝐹𝐹−1𝑣𝑣1 

𝜆𝜆2
𝐿𝐿𝑣𝑣2 𝜆𝜆2

𝐿𝐿+1𝑣𝑣2 𝜆𝜆2
𝐿𝐿+2𝑣𝑣2 ⋯ 𝜆𝜆2

𝐿𝐿+𝐹𝐹−1𝑣𝑣2 
⋮ ⋮ ⋮ ⋮ ⋮

𝜆𝜆𝐿𝐿−1
𝐿𝐿 𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1

𝐿𝐿+1𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1
𝐿𝐿+2𝑣𝑣𝐿𝐿−1 ⋯ 𝜆𝜆𝐿𝐿−1

𝐿𝐿+𝐹𝐹−1𝑣𝑣𝐿𝐿−1 ]
 
 
 
= ΨT𝑓𝑓. 

   
 

(15) 

Combining the reconstruction in Eqn. (14) and the forecast in Eqn. (15) gives 

𝑌𝑌 = [𝑌𝑌𝑟𝑟 𝑌𝑌𝑓𝑓] = Ψ[𝑇𝑇𝑟𝑟 𝑇𝑇𝑓𝑓]. (16) 

The reconstruction in Eqn. (14) can be grouped further into several sub-components such as 

trend, periodic component, and noise. To elucidate further, we write Eqn. (14) as a sum of three groups 

of matrices as follows: 

𝑌𝑌𝑟𝑟 = ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺1

+ ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺2

+ ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺3

 

= 𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑌̂𝑌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑌̂𝑌𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 

  
 
 
 (17) 

where 𝐺𝐺1 is the group of indices corresponds to trend component,  𝐺𝐺2 is the group of indices corresponds 

to periodic components, and 𝐺𝐺3 is the group of indices corresponds to minor components and noise. 

When constructing the groups, it is useful to consider the frequencies of the DMD modes which are 

defined as 

 𝜔𝜔𝑗𝑗 =
ln (𝜆𝜆𝑗𝑗)

𝛿𝛿𝛿𝛿 , ∀ 𝑗𝑗 ∈ {1,2,… , 𝐿𝐿 − 1}.    
(18) 

Here 𝛿𝛿𝛿𝛿 refers to the lag between samples of the time series. The real part of 𝜔𝜔𝑖𝑖 is responsible for the 

growth/decay of the DMD modes while the imaginary parts bring about the oscillatory behaviour. For 

trend extraction, we look for sub-component(s) with low oscillation, i.e. the 𝑗𝑗-th sub-component 

Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗 is a trend if 𝑖𝑖𝑖𝑖(𝜔𝜔𝑗𝑗) ≈ 0. Then, the evolution of the trend component for 𝑛𝑛 = 𝐿𝐿 + 1, 𝐿𝐿 +

2,… , 𝐿𝐿 + 𝐹𝐹, produces a forecast of the time dynamic of trend in the time series into 𝐹𝐹 time steps ahead 

given by 

𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑓𝑓 = Ψ𝐺𝐺1𝑇𝑇𝐺𝐺1

𝑓𝑓 , (19) 

where Ψ𝐺𝐺1consists of the columns of Ψ associated with 𝐺𝐺1, while 𝑇𝑇𝐺𝐺1
𝑓𝑓 consists of the rows of 𝑇𝑇𝑓𝑓 

associated with 𝐺𝐺1. 

 

 

						         (15)

Combining the reconstruction in Eqn. (14) and 
the forecast in Eqn. (15) gives

𝑌𝑌𝑓𝑓 = Ψ
[
 
 
 𝜆𝜆1

𝐿𝐿𝑣𝑣1 𝜆𝜆1
𝐿𝐿+1𝑣𝑣1 𝜆𝜆1

𝐿𝐿+2𝑣𝑣1 ⋯ 𝜆𝜆1
𝐿𝐿+𝐹𝐹−1𝑣𝑣1 

𝜆𝜆2
𝐿𝐿𝑣𝑣2 𝜆𝜆2

𝐿𝐿+1𝑣𝑣2 𝜆𝜆2
𝐿𝐿+2𝑣𝑣2 ⋯ 𝜆𝜆2

𝐿𝐿+𝐹𝐹−1𝑣𝑣2 
⋮ ⋮ ⋮ ⋮ ⋮

𝜆𝜆𝐿𝐿−1
𝐿𝐿 𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1

𝐿𝐿+1𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1
𝐿𝐿+2𝑣𝑣𝐿𝐿−1 ⋯ 𝜆𝜆𝐿𝐿−1

𝐿𝐿+𝐹𝐹−1𝑣𝑣𝐿𝐿−1 ]
 
 
 
= ΨT𝑓𝑓. 

   
 

(15) 

Combining the reconstruction in Eqn. (14) and the forecast in Eqn. (15) gives 

𝑌𝑌 = [𝑌𝑌𝑟𝑟 𝑌𝑌𝑓𝑓] = Ψ[𝑇𝑇𝑟𝑟 𝑇𝑇𝑓𝑓]. (16) 

The reconstruction in Eqn. (14) can be grouped further into several sub-components such as 

trend, periodic component, and noise. To elucidate further, we write Eqn. (14) as a sum of three groups 

of matrices as follows: 

𝑌𝑌𝑟𝑟 = ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺1

+ ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺2

+ ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺3

 

= 𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑌̂𝑌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑌̂𝑌𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 

  
 
 
 (17) 

where 𝐺𝐺1 is the group of indices corresponds to trend component,  𝐺𝐺2 is the group of indices corresponds 

to periodic components, and 𝐺𝐺3 is the group of indices corresponds to minor components and noise. 

When constructing the groups, it is useful to consider the frequencies of the DMD modes which are 

defined as 

 𝜔𝜔𝑗𝑗 =
ln (𝜆𝜆𝑗𝑗)

𝛿𝛿𝛿𝛿 , ∀ 𝑗𝑗 ∈ {1,2,… , 𝐿𝐿 − 1}.    
(18) 

Here 𝛿𝛿𝛿𝛿 refers to the lag between samples of the time series. The real part of 𝜔𝜔𝑖𝑖 is responsible for the 

growth/decay of the DMD modes while the imaginary parts bring about the oscillatory behaviour. For 

trend extraction, we look for sub-component(s) with low oscillation, i.e. the 𝑗𝑗-th sub-component 

Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗 is a trend if 𝑖𝑖𝑖𝑖(𝜔𝜔𝑗𝑗) ≈ 0. Then, the evolution of the trend component for 𝑛𝑛 = 𝐿𝐿 + 1, 𝐿𝐿 +

2,… , 𝐿𝐿 + 𝐹𝐹, produces a forecast of the time dynamic of trend in the time series into 𝐹𝐹 time steps ahead 

given by 

𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑓𝑓 = Ψ𝐺𝐺1𝑇𝑇𝐺𝐺1

𝑓𝑓 , (19) 

where Ψ𝐺𝐺1consists of the columns of Ψ associated with 𝐺𝐺1, while 𝑇𝑇𝐺𝐺1
𝑓𝑓 consists of the rows of 𝑇𝑇𝑓𝑓 

associated with 𝐺𝐺1. 

 

 

		     (16)

The reconstruction in Eqn. (14) can be 
grouped further into several sub-components 
such as trend, periodic component, and noise. To 
elucidate further, we write Eqn. (14) as a sum of  
three groups of  matrices as follows:

𝑌𝑌𝑓𝑓 = Ψ
[
 
 
 𝜆𝜆1

𝐿𝐿𝑣𝑣1 𝜆𝜆1
𝐿𝐿+1𝑣𝑣1 𝜆𝜆1

𝐿𝐿+2𝑣𝑣1 ⋯ 𝜆𝜆1
𝐿𝐿+𝐹𝐹−1𝑣𝑣1 

𝜆𝜆2
𝐿𝐿𝑣𝑣2 𝜆𝜆2

𝐿𝐿+1𝑣𝑣2 𝜆𝜆2
𝐿𝐿+2𝑣𝑣2 ⋯ 𝜆𝜆2

𝐿𝐿+𝐹𝐹−1𝑣𝑣2 
⋮ ⋮ ⋮ ⋮ ⋮

𝜆𝜆𝐿𝐿−1
𝐿𝐿 𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1

𝐿𝐿+1𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1
𝐿𝐿+2𝑣𝑣𝐿𝐿−1 ⋯ 𝜆𝜆𝐿𝐿−1

𝐿𝐿+𝐹𝐹−1𝑣𝑣𝐿𝐿−1 ]
 
 
 
= ΨT𝑓𝑓. 

   
 

(15) 

Combining the reconstruction in Eqn. (14) and the forecast in Eqn. (15) gives 

𝑌𝑌 = [𝑌𝑌𝑟𝑟 𝑌𝑌𝑓𝑓] = Ψ[𝑇𝑇𝑟𝑟 𝑇𝑇𝑓𝑓]. (16) 

The reconstruction in Eqn. (14) can be grouped further into several sub-components such as 

trend, periodic component, and noise. To elucidate further, we write Eqn. (14) as a sum of three groups 

of matrices as follows: 

𝑌𝑌𝑟𝑟 = ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺1

+ ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺2

+ ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺3

 

= 𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑌̂𝑌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑌̂𝑌𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 

  
 
 
 (17) 

where 𝐺𝐺1 is the group of indices corresponds to trend component,  𝐺𝐺2 is the group of indices corresponds 

to periodic components, and 𝐺𝐺3 is the group of indices corresponds to minor components and noise. 

When constructing the groups, it is useful to consider the frequencies of the DMD modes which are 

defined as 

 𝜔𝜔𝑗𝑗 =
ln (𝜆𝜆𝑗𝑗)

𝛿𝛿𝛿𝛿 , ∀ 𝑗𝑗 ∈ {1,2,… , 𝐿𝐿 − 1}.    
(18) 

Here 𝛿𝛿𝛿𝛿 refers to the lag between samples of the time series. The real part of 𝜔𝜔𝑖𝑖 is responsible for the 

growth/decay of the DMD modes while the imaginary parts bring about the oscillatory behaviour. For 

trend extraction, we look for sub-component(s) with low oscillation, i.e. the 𝑗𝑗-th sub-component 

Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗 is a trend if 𝑖𝑖𝑖𝑖(𝜔𝜔𝑗𝑗) ≈ 0. Then, the evolution of the trend component for 𝑛𝑛 = 𝐿𝐿 + 1, 𝐿𝐿 +

2,… , 𝐿𝐿 + 𝐹𝐹, produces a forecast of the time dynamic of trend in the time series into 𝐹𝐹 time steps ahead 

given by 

𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑓𝑓 = Ψ𝐺𝐺1𝑇𝑇𝐺𝐺1

𝑓𝑓 , (19) 

where Ψ𝐺𝐺1consists of the columns of Ψ associated with 𝐺𝐺1, while 𝑇𝑇𝐺𝐺1
𝑓𝑓 consists of the rows of 𝑇𝑇𝑓𝑓 

associated with 𝐺𝐺1. 

 

 

𝑌𝑌𝑓𝑓 = Ψ
[
 
 
 𝜆𝜆1

𝐿𝐿𝑣𝑣1 𝜆𝜆1
𝐿𝐿+1𝑣𝑣1 𝜆𝜆1

𝐿𝐿+2𝑣𝑣1 ⋯ 𝜆𝜆1
𝐿𝐿+𝐹𝐹−1𝑣𝑣1 

𝜆𝜆2
𝐿𝐿𝑣𝑣2 𝜆𝜆2

𝐿𝐿+1𝑣𝑣2 𝜆𝜆2
𝐿𝐿+2𝑣𝑣2 ⋯ 𝜆𝜆2

𝐿𝐿+𝐹𝐹−1𝑣𝑣2 
⋮ ⋮ ⋮ ⋮ ⋮

𝜆𝜆𝐿𝐿−1
𝐿𝐿 𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1

𝐿𝐿+1𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1
𝐿𝐿+2𝑣𝑣𝐿𝐿−1 ⋯ 𝜆𝜆𝐿𝐿−1

𝐿𝐿+𝐹𝐹−1𝑣𝑣𝐿𝐿−1 ]
 
 
 
= ΨT𝑓𝑓. 

   
 

(15) 

Combining the reconstruction in Eqn. (14) and the forecast in Eqn. (15) gives 

𝑌𝑌 = [𝑌𝑌𝑟𝑟 𝑌𝑌𝑓𝑓] = Ψ[𝑇𝑇𝑟𝑟 𝑇𝑇𝑓𝑓]. (16) 

The reconstruction in Eqn. (14) can be grouped further into several sub-components such as 

trend, periodic component, and noise. To elucidate further, we write Eqn. (14) as a sum of three groups 

of matrices as follows: 

𝑌𝑌𝑟𝑟 = ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺1

+ ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺2

+ ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺3

 

= 𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑌̂𝑌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑌̂𝑌𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 

  
 
 
 (17) 

where 𝐺𝐺1 is the group of indices corresponds to trend component,  𝐺𝐺2 is the group of indices corresponds 

to periodic components, and 𝐺𝐺3 is the group of indices corresponds to minor components and noise. 

When constructing the groups, it is useful to consider the frequencies of the DMD modes which are 

defined as 

 𝜔𝜔𝑗𝑗 =
ln (𝜆𝜆𝑗𝑗)

𝛿𝛿𝛿𝛿 , ∀ 𝑗𝑗 ∈ {1,2,… , 𝐿𝐿 − 1}.    
(18) 

Here 𝛿𝛿𝛿𝛿 refers to the lag between samples of the time series. The real part of 𝜔𝜔𝑖𝑖 is responsible for the 

growth/decay of the DMD modes while the imaginary parts bring about the oscillatory behaviour. For 

trend extraction, we look for sub-component(s) with low oscillation, i.e. the 𝑗𝑗-th sub-component 

Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗 is a trend if 𝑖𝑖𝑖𝑖(𝜔𝜔𝑗𝑗) ≈ 0. Then, the evolution of the trend component for 𝑛𝑛 = 𝐿𝐿 + 1, 𝐿𝐿 +

2,… , 𝐿𝐿 + 𝐹𝐹, produces a forecast of the time dynamic of trend in the time series into 𝐹𝐹 time steps ahead 

given by 

𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑓𝑓 = Ψ𝐺𝐺1𝑇𝑇𝐺𝐺1

𝑓𝑓 , (19) 

where Ψ𝐺𝐺1consists of the columns of Ψ associated with 𝐺𝐺1, while 𝑇𝑇𝐺𝐺1
𝑓𝑓 consists of the rows of 𝑇𝑇𝑓𝑓 

associated with 𝐺𝐺1. 

 

 

𝑌𝑌𝑓𝑓 = Ψ
[
 
 
 𝜆𝜆1

𝐿𝐿𝑣𝑣1 𝜆𝜆1
𝐿𝐿+1𝑣𝑣1 𝜆𝜆1

𝐿𝐿+2𝑣𝑣1 ⋯ 𝜆𝜆1
𝐿𝐿+𝐹𝐹−1𝑣𝑣1 

𝜆𝜆2
𝐿𝐿𝑣𝑣2 𝜆𝜆2

𝐿𝐿+1𝑣𝑣2 𝜆𝜆2
𝐿𝐿+2𝑣𝑣2 ⋯ 𝜆𝜆2

𝐿𝐿+𝐹𝐹−1𝑣𝑣2 
⋮ ⋮ ⋮ ⋮ ⋮

𝜆𝜆𝐿𝐿−1
𝐿𝐿 𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1

𝐿𝐿+1𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1
𝐿𝐿+2𝑣𝑣𝐿𝐿−1 ⋯ 𝜆𝜆𝐿𝐿−1

𝐿𝐿+𝐹𝐹−1𝑣𝑣𝐿𝐿−1 ]
 
 
 
= ΨT𝑓𝑓. 

   
 

(15) 

Combining the reconstruction in Eqn. (14) and the forecast in Eqn. (15) gives 

𝑌𝑌 = [𝑌𝑌𝑟𝑟 𝑌𝑌𝑓𝑓] = Ψ[𝑇𝑇𝑟𝑟 𝑇𝑇𝑓𝑓]. (16) 

The reconstruction in Eqn. (14) can be grouped further into several sub-components such as 

trend, periodic component, and noise. To elucidate further, we write Eqn. (14) as a sum of three groups 

of matrices as follows: 

𝑌𝑌𝑟𝑟 = ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺1

+ ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺2

+ ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺3

 

= 𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑌̂𝑌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑌̂𝑌𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 

  
 
 
 (17) 

where 𝐺𝐺1 is the group of indices corresponds to trend component,  𝐺𝐺2 is the group of indices corresponds 

to periodic components, and 𝐺𝐺3 is the group of indices corresponds to minor components and noise. 

When constructing the groups, it is useful to consider the frequencies of the DMD modes which are 

defined as 

 𝜔𝜔𝑗𝑗 =
ln (𝜆𝜆𝑗𝑗)

𝛿𝛿𝛿𝛿 , ∀ 𝑗𝑗 ∈ {1,2,… , 𝐿𝐿 − 1}.    
(18) 

Here 𝛿𝛿𝛿𝛿 refers to the lag between samples of the time series. The real part of 𝜔𝜔𝑖𝑖 is responsible for the 

growth/decay of the DMD modes while the imaginary parts bring about the oscillatory behaviour. For 

trend extraction, we look for sub-component(s) with low oscillation, i.e. the 𝑗𝑗-th sub-component 

Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗 is a trend if 𝑖𝑖𝑖𝑖(𝜔𝜔𝑗𝑗) ≈ 0. Then, the evolution of the trend component for 𝑛𝑛 = 𝐿𝐿 + 1, 𝐿𝐿 +

2,… , 𝐿𝐿 + 𝐹𝐹, produces a forecast of the time dynamic of trend in the time series into 𝐹𝐹 time steps ahead 

given by 

𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑓𝑓 = Ψ𝐺𝐺1𝑇𝑇𝐺𝐺1

𝑓𝑓 , (19) 

where Ψ𝐺𝐺1consists of the columns of Ψ associated with 𝐺𝐺1, while 𝑇𝑇𝐺𝐺1
𝑓𝑓 consists of the rows of 𝑇𝑇𝑓𝑓 

associated with 𝐺𝐺1. 

 

 

						        (17)

where 

𝑌𝑌𝑓𝑓 = Ψ
[
 
 
 𝜆𝜆1

𝐿𝐿𝑣𝑣1 𝜆𝜆1
𝐿𝐿+1𝑣𝑣1 𝜆𝜆1

𝐿𝐿+2𝑣𝑣1 ⋯ 𝜆𝜆1
𝐿𝐿+𝐹𝐹−1𝑣𝑣1 

𝜆𝜆2
𝐿𝐿𝑣𝑣2 𝜆𝜆2

𝐿𝐿+1𝑣𝑣2 𝜆𝜆2
𝐿𝐿+2𝑣𝑣2 ⋯ 𝜆𝜆2

𝐿𝐿+𝐹𝐹−1𝑣𝑣2 
⋮ ⋮ ⋮ ⋮ ⋮

𝜆𝜆𝐿𝐿−1
𝐿𝐿 𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1

𝐿𝐿+1𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1
𝐿𝐿+2𝑣𝑣𝐿𝐿−1 ⋯ 𝜆𝜆𝐿𝐿−1

𝐿𝐿+𝐹𝐹−1𝑣𝑣𝐿𝐿−1 ]
 
 
 
= ΨT𝑓𝑓. 

   
 

(15) 

Combining the reconstruction in Eqn. (14) and the forecast in Eqn. (15) gives 

𝑌𝑌 = [𝑌𝑌𝑟𝑟 𝑌𝑌𝑓𝑓] = Ψ[𝑇𝑇𝑟𝑟 𝑇𝑇𝑓𝑓]. (16) 

The reconstruction in Eqn. (14) can be grouped further into several sub-components such as 

trend, periodic component, and noise. To elucidate further, we write Eqn. (14) as a sum of three groups 

of matrices as follows: 

𝑌𝑌𝑟𝑟 = ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺1

+ ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺2

+ ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺3

 

= 𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑌̂𝑌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑌̂𝑌𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 

  
 
 
 (17) 

where 𝐺𝐺1 is the group of indices corresponds to trend component,  𝐺𝐺2 is the group of indices corresponds 

to periodic components, and 𝐺𝐺3 is the group of indices corresponds to minor components and noise. 

When constructing the groups, it is useful to consider the frequencies of the DMD modes which are 

defined as 

 𝜔𝜔𝑗𝑗 =
ln (𝜆𝜆𝑗𝑗)

𝛿𝛿𝛿𝛿 , ∀ 𝑗𝑗 ∈ {1,2,… , 𝐿𝐿 − 1}.    
(18) 

Here 𝛿𝛿𝛿𝛿 refers to the lag between samples of the time series. The real part of 𝜔𝜔𝑖𝑖 is responsible for the 

growth/decay of the DMD modes while the imaginary parts bring about the oscillatory behaviour. For 

trend extraction, we look for sub-component(s) with low oscillation, i.e. the 𝑗𝑗-th sub-component 

Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗 is a trend if 𝑖𝑖𝑖𝑖(𝜔𝜔𝑗𝑗) ≈ 0. Then, the evolution of the trend component for 𝑛𝑛 = 𝐿𝐿 + 1, 𝐿𝐿 +

2,… , 𝐿𝐿 + 𝐹𝐹, produces a forecast of the time dynamic of trend in the time series into 𝐹𝐹 time steps ahead 

given by 

𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑓𝑓 = Ψ𝐺𝐺1𝑇𝑇𝐺𝐺1

𝑓𝑓 , (19) 

where Ψ𝐺𝐺1consists of the columns of Ψ associated with 𝐺𝐺1, while 𝑇𝑇𝐺𝐺1
𝑓𝑓 consists of the rows of 𝑇𝑇𝑓𝑓 

associated with 𝐺𝐺1. 

 

 

 is the group of  indices corresponds 
to trend component, 

𝑌𝑌𝑓𝑓 = Ψ
[
 
 
 𝜆𝜆1

𝐿𝐿𝑣𝑣1 𝜆𝜆1
𝐿𝐿+1𝑣𝑣1 𝜆𝜆1

𝐿𝐿+2𝑣𝑣1 ⋯ 𝜆𝜆1
𝐿𝐿+𝐹𝐹−1𝑣𝑣1 

𝜆𝜆2
𝐿𝐿𝑣𝑣2 𝜆𝜆2

𝐿𝐿+1𝑣𝑣2 𝜆𝜆2
𝐿𝐿+2𝑣𝑣2 ⋯ 𝜆𝜆2

𝐿𝐿+𝐹𝐹−1𝑣𝑣2 
⋮ ⋮ ⋮ ⋮ ⋮

𝜆𝜆𝐿𝐿−1
𝐿𝐿 𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1

𝐿𝐿+1𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1
𝐿𝐿+2𝑣𝑣𝐿𝐿−1 ⋯ 𝜆𝜆𝐿𝐿−1

𝐿𝐿+𝐹𝐹−1𝑣𝑣𝐿𝐿−1 ]
 
 
 
= ΨT𝑓𝑓. 

   
 

(15) 

Combining the reconstruction in Eqn. (14) and the forecast in Eqn. (15) gives 

𝑌𝑌 = [𝑌𝑌𝑟𝑟 𝑌𝑌𝑓𝑓] = Ψ[𝑇𝑇𝑟𝑟 𝑇𝑇𝑓𝑓]. (16) 

The reconstruction in Eqn. (14) can be grouped further into several sub-components such as 

trend, periodic component, and noise. To elucidate further, we write Eqn. (14) as a sum of three groups 

of matrices as follows: 

𝑌𝑌𝑟𝑟 = ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺1

+ ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺2

+ ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺3

 

= 𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑌̂𝑌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑌̂𝑌𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 

  
 
 
 (17) 

where 𝐺𝐺1 is the group of indices corresponds to trend component,  𝐺𝐺2 is the group of indices corresponds 

to periodic components, and 𝐺𝐺3 is the group of indices corresponds to minor components and noise. 

When constructing the groups, it is useful to consider the frequencies of the DMD modes which are 

defined as 

 𝜔𝜔𝑗𝑗 =
ln (𝜆𝜆𝑗𝑗)

𝛿𝛿𝛿𝛿 , ∀ 𝑗𝑗 ∈ {1,2,… , 𝐿𝐿 − 1}.    
(18) 

Here 𝛿𝛿𝛿𝛿 refers to the lag between samples of the time series. The real part of 𝜔𝜔𝑖𝑖 is responsible for the 

growth/decay of the DMD modes while the imaginary parts bring about the oscillatory behaviour. For 

trend extraction, we look for sub-component(s) with low oscillation, i.e. the 𝑗𝑗-th sub-component 

Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗 is a trend if 𝑖𝑖𝑖𝑖(𝜔𝜔𝑗𝑗) ≈ 0. Then, the evolution of the trend component for 𝑛𝑛 = 𝐿𝐿 + 1, 𝐿𝐿 +

2,… , 𝐿𝐿 + 𝐹𝐹, produces a forecast of the time dynamic of trend in the time series into 𝐹𝐹 time steps ahead 

given by 

𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑓𝑓 = Ψ𝐺𝐺1𝑇𝑇𝐺𝐺1

𝑓𝑓 , (19) 

where Ψ𝐺𝐺1consists of the columns of Ψ associated with 𝐺𝐺1, while 𝑇𝑇𝐺𝐺1
𝑓𝑓 consists of the rows of 𝑇𝑇𝑓𝑓 

associated with 𝐺𝐺1. 

 

 

 is the group of  indices 
corresponds to periodic components, and 

𝑌𝑌𝑓𝑓 = Ψ
[
 
 
 𝜆𝜆1

𝐿𝐿𝑣𝑣1 𝜆𝜆1
𝐿𝐿+1𝑣𝑣1 𝜆𝜆1

𝐿𝐿+2𝑣𝑣1 ⋯ 𝜆𝜆1
𝐿𝐿+𝐹𝐹−1𝑣𝑣1 

𝜆𝜆2
𝐿𝐿𝑣𝑣2 𝜆𝜆2

𝐿𝐿+1𝑣𝑣2 𝜆𝜆2
𝐿𝐿+2𝑣𝑣2 ⋯ 𝜆𝜆2

𝐿𝐿+𝐹𝐹−1𝑣𝑣2 
⋮ ⋮ ⋮ ⋮ ⋮

𝜆𝜆𝐿𝐿−1
𝐿𝐿 𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1

𝐿𝐿+1𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1
𝐿𝐿+2𝑣𝑣𝐿𝐿−1 ⋯ 𝜆𝜆𝐿𝐿−1

𝐿𝐿+𝐹𝐹−1𝑣𝑣𝐿𝐿−1 ]
 
 
 
= ΨT𝑓𝑓. 

   
 

(15) 

Combining the reconstruction in Eqn. (14) and the forecast in Eqn. (15) gives 

𝑌𝑌 = [𝑌𝑌𝑟𝑟 𝑌𝑌𝑓𝑓] = Ψ[𝑇𝑇𝑟𝑟 𝑇𝑇𝑓𝑓]. (16) 

The reconstruction in Eqn. (14) can be grouped further into several sub-components such as 

trend, periodic component, and noise. To elucidate further, we write Eqn. (14) as a sum of three groups 

of matrices as follows: 

𝑌𝑌𝑟𝑟 = ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺1

+ ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺2

+ ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺3

 

= 𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑌̂𝑌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑌̂𝑌𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 

  
 
 
 (17) 

where 𝐺𝐺1 is the group of indices corresponds to trend component,  𝐺𝐺2 is the group of indices corresponds 

to periodic components, and 𝐺𝐺3 is the group of indices corresponds to minor components and noise. 

When constructing the groups, it is useful to consider the frequencies of the DMD modes which are 

defined as 

 𝜔𝜔𝑗𝑗 =
ln (𝜆𝜆𝑗𝑗)

𝛿𝛿𝛿𝛿 , ∀ 𝑗𝑗 ∈ {1,2,… , 𝐿𝐿 − 1}.    
(18) 

Here 𝛿𝛿𝛿𝛿 refers to the lag between samples of the time series. The real part of 𝜔𝜔𝑖𝑖 is responsible for the 

growth/decay of the DMD modes while the imaginary parts bring about the oscillatory behaviour. For 

trend extraction, we look for sub-component(s) with low oscillation, i.e. the 𝑗𝑗-th sub-component 

Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗 is a trend if 𝑖𝑖𝑖𝑖(𝜔𝜔𝑗𝑗) ≈ 0. Then, the evolution of the trend component for 𝑛𝑛 = 𝐿𝐿 + 1, 𝐿𝐿 +

2,… , 𝐿𝐿 + 𝐹𝐹, produces a forecast of the time dynamic of trend in the time series into 𝐹𝐹 time steps ahead 

given by 

𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑓𝑓 = Ψ𝐺𝐺1𝑇𝑇𝐺𝐺1

𝑓𝑓 , (19) 

where Ψ𝐺𝐺1consists of the columns of Ψ associated with 𝐺𝐺1, while 𝑇𝑇𝐺𝐺1
𝑓𝑓 consists of the rows of 𝑇𝑇𝑓𝑓 

associated with 𝐺𝐺1. 

 

 

 
is the group of  indices corresponds to minor 
components and noise. When constructing the 
groups, it is useful to consider the frequencies of  
the DMD modes which are defined as

𝑌𝑌𝑓𝑓 = Ψ
[
 
 
 𝜆𝜆1

𝐿𝐿𝑣𝑣1 𝜆𝜆1
𝐿𝐿+1𝑣𝑣1 𝜆𝜆1

𝐿𝐿+2𝑣𝑣1 ⋯ 𝜆𝜆1
𝐿𝐿+𝐹𝐹−1𝑣𝑣1 

𝜆𝜆2
𝐿𝐿𝑣𝑣2 𝜆𝜆2

𝐿𝐿+1𝑣𝑣2 𝜆𝜆2
𝐿𝐿+2𝑣𝑣2 ⋯ 𝜆𝜆2

𝐿𝐿+𝐹𝐹−1𝑣𝑣2 
⋮ ⋮ ⋮ ⋮ ⋮

𝜆𝜆𝐿𝐿−1
𝐿𝐿 𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1

𝐿𝐿+1𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1
𝐿𝐿+2𝑣𝑣𝐿𝐿−1 ⋯ 𝜆𝜆𝐿𝐿−1

𝐿𝐿+𝐹𝐹−1𝑣𝑣𝐿𝐿−1 ]
 
 
 
= ΨT𝑓𝑓. 

   
 

(15) 

Combining the reconstruction in Eqn. (14) and the forecast in Eqn. (15) gives 

𝑌𝑌 = [𝑌𝑌𝑟𝑟 𝑌𝑌𝑓𝑓] = Ψ[𝑇𝑇𝑟𝑟 𝑇𝑇𝑓𝑓]. (16) 

The reconstruction in Eqn. (14) can be grouped further into several sub-components such as 

trend, periodic component, and noise. To elucidate further, we write Eqn. (14) as a sum of three groups 

of matrices as follows: 

𝑌𝑌𝑟𝑟 = ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺1

+ ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺2

+ ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺3

 

= 𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑌̂𝑌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑌̂𝑌𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 

  
 
 
 (17) 

where 𝐺𝐺1 is the group of indices corresponds to trend component,  𝐺𝐺2 is the group of indices corresponds 

to periodic components, and 𝐺𝐺3 is the group of indices corresponds to minor components and noise. 

When constructing the groups, it is useful to consider the frequencies of the DMD modes which are 

defined as 

 𝜔𝜔𝑗𝑗 =
ln (𝜆𝜆𝑗𝑗)

𝛿𝛿𝛿𝛿 , ∀ 𝑗𝑗 ∈ {1,2,… , 𝐿𝐿 − 1}.    
(18) 

Here 𝛿𝛿𝛿𝛿 refers to the lag between samples of the time series. The real part of 𝜔𝜔𝑖𝑖 is responsible for the 

growth/decay of the DMD modes while the imaginary parts bring about the oscillatory behaviour. For 

trend extraction, we look for sub-component(s) with low oscillation, i.e. the 𝑗𝑗-th sub-component 

Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗 is a trend if 𝑖𝑖𝑖𝑖(𝜔𝜔𝑗𝑗) ≈ 0. Then, the evolution of the trend component for 𝑛𝑛 = 𝐿𝐿 + 1, 𝐿𝐿 +

2,… , 𝐿𝐿 + 𝐹𝐹, produces a forecast of the time dynamic of trend in the time series into 𝐹𝐹 time steps ahead 

given by 

𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑓𝑓 = Ψ𝐺𝐺1𝑇𝑇𝐺𝐺1

𝑓𝑓 , (19) 

where Ψ𝐺𝐺1consists of the columns of Ψ associated with 𝐺𝐺1, while 𝑇𝑇𝐺𝐺1
𝑓𝑓 consists of the rows of 𝑇𝑇𝑓𝑓 

associated with 𝐺𝐺1. 

 

 

         (18)

Here 

𝑌𝑌𝑓𝑓 = Ψ
[
 
 
 𝜆𝜆1

𝐿𝐿𝑣𝑣1 𝜆𝜆1
𝐿𝐿+1𝑣𝑣1 𝜆𝜆1

𝐿𝐿+2𝑣𝑣1 ⋯ 𝜆𝜆1
𝐿𝐿+𝐹𝐹−1𝑣𝑣1 

𝜆𝜆2
𝐿𝐿𝑣𝑣2 𝜆𝜆2

𝐿𝐿+1𝑣𝑣2 𝜆𝜆2
𝐿𝐿+2𝑣𝑣2 ⋯ 𝜆𝜆2

𝐿𝐿+𝐹𝐹−1𝑣𝑣2 
⋮ ⋮ ⋮ ⋮ ⋮

𝜆𝜆𝐿𝐿−1
𝐿𝐿 𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1

𝐿𝐿+1𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1
𝐿𝐿+2𝑣𝑣𝐿𝐿−1 ⋯ 𝜆𝜆𝐿𝐿−1

𝐿𝐿+𝐹𝐹−1𝑣𝑣𝐿𝐿−1 ]
 
 
 
= ΨT𝑓𝑓. 

   
 

(15) 

Combining the reconstruction in Eqn. (14) and the forecast in Eqn. (15) gives 

𝑌𝑌 = [𝑌𝑌𝑟𝑟 𝑌𝑌𝑓𝑓] = Ψ[𝑇𝑇𝑟𝑟 𝑇𝑇𝑓𝑓]. (16) 

The reconstruction in Eqn. (14) can be grouped further into several sub-components such as 

trend, periodic component, and noise. To elucidate further, we write Eqn. (14) as a sum of three groups 

of matrices as follows: 

𝑌𝑌𝑟𝑟 = ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺1

+ ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺2

+ ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺3

 

= 𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑌̂𝑌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑌̂𝑌𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 

  
 
 
 (17) 

where 𝐺𝐺1 is the group of indices corresponds to trend component,  𝐺𝐺2 is the group of indices corresponds 

to periodic components, and 𝐺𝐺3 is the group of indices corresponds to minor components and noise. 

When constructing the groups, it is useful to consider the frequencies of the DMD modes which are 

defined as 

 𝜔𝜔𝑗𝑗 =
ln (𝜆𝜆𝑗𝑗)

𝛿𝛿𝛿𝛿 , ∀ 𝑗𝑗 ∈ {1,2,… , 𝐿𝐿 − 1}.    
(18) 

Here 𝛿𝛿𝛿𝛿 refers to the lag between samples of the time series. The real part of 𝜔𝜔𝑖𝑖 is responsible for the 

growth/decay of the DMD modes while the imaginary parts bring about the oscillatory behaviour. For 

trend extraction, we look for sub-component(s) with low oscillation, i.e. the 𝑗𝑗-th sub-component 

Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗 is a trend if 𝑖𝑖𝑖𝑖(𝜔𝜔𝑗𝑗) ≈ 0. Then, the evolution of the trend component for 𝑛𝑛 = 𝐿𝐿 + 1, 𝐿𝐿 +

2,… , 𝐿𝐿 + 𝐹𝐹, produces a forecast of the time dynamic of trend in the time series into 𝐹𝐹 time steps ahead 

given by 

𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑓𝑓 = Ψ𝐺𝐺1𝑇𝑇𝐺𝐺1

𝑓𝑓 , (19) 

where Ψ𝐺𝐺1consists of the columns of Ψ associated with 𝐺𝐺1, while 𝑇𝑇𝐺𝐺1
𝑓𝑓 consists of the rows of 𝑇𝑇𝑓𝑓 

associated with 𝐺𝐺1. 

 

 

 refers to the lag between samples of  the 
time series. The real part of  

𝑌𝑌𝑓𝑓 = Ψ
[
 
 
 𝜆𝜆1

𝐿𝐿𝑣𝑣1 𝜆𝜆1
𝐿𝐿+1𝑣𝑣1 𝜆𝜆1

𝐿𝐿+2𝑣𝑣1 ⋯ 𝜆𝜆1
𝐿𝐿+𝐹𝐹−1𝑣𝑣1 

𝜆𝜆2
𝐿𝐿𝑣𝑣2 𝜆𝜆2

𝐿𝐿+1𝑣𝑣2 𝜆𝜆2
𝐿𝐿+2𝑣𝑣2 ⋯ 𝜆𝜆2

𝐿𝐿+𝐹𝐹−1𝑣𝑣2 
⋮ ⋮ ⋮ ⋮ ⋮

𝜆𝜆𝐿𝐿−1
𝐿𝐿 𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1

𝐿𝐿+1𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1
𝐿𝐿+2𝑣𝑣𝐿𝐿−1 ⋯ 𝜆𝜆𝐿𝐿−1

𝐿𝐿+𝐹𝐹−1𝑣𝑣𝐿𝐿−1 ]
 
 
 
= ΨT𝑓𝑓. 

   
 

(15) 

Combining the reconstruction in Eqn. (14) and the forecast in Eqn. (15) gives 

𝑌𝑌 = [𝑌𝑌𝑟𝑟 𝑌𝑌𝑓𝑓] = Ψ[𝑇𝑇𝑟𝑟 𝑇𝑇𝑓𝑓]. (16) 

The reconstruction in Eqn. (14) can be grouped further into several sub-components such as 

trend, periodic component, and noise. To elucidate further, we write Eqn. (14) as a sum of three groups 

of matrices as follows: 

𝑌𝑌𝑟𝑟 = ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺1

+ ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺2

+ ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺3

 

= 𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑌̂𝑌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑌̂𝑌𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 

  
 
 
 (17) 

where 𝐺𝐺1 is the group of indices corresponds to trend component,  𝐺𝐺2 is the group of indices corresponds 

to periodic components, and 𝐺𝐺3 is the group of indices corresponds to minor components and noise. 

When constructing the groups, it is useful to consider the frequencies of the DMD modes which are 

defined as 

 𝜔𝜔𝑗𝑗 =
ln (𝜆𝜆𝑗𝑗)

𝛿𝛿𝛿𝛿 , ∀ 𝑗𝑗 ∈ {1,2,… , 𝐿𝐿 − 1}.    
(18) 

Here 𝛿𝛿𝛿𝛿 refers to the lag between samples of the time series. The real part of 𝜔𝜔𝑖𝑖 is responsible for the 

growth/decay of the DMD modes while the imaginary parts bring about the oscillatory behaviour. For 

trend extraction, we look for sub-component(s) with low oscillation, i.e. the 𝑗𝑗-th sub-component 

Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗 is a trend if 𝑖𝑖𝑖𝑖(𝜔𝜔𝑗𝑗) ≈ 0. Then, the evolution of the trend component for 𝑛𝑛 = 𝐿𝐿 + 1, 𝐿𝐿 +

2,… , 𝐿𝐿 + 𝐹𝐹, produces a forecast of the time dynamic of trend in the time series into 𝐹𝐹 time steps ahead 

given by 

𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑓𝑓 = Ψ𝐺𝐺1𝑇𝑇𝐺𝐺1

𝑓𝑓 , (19) 

where Ψ𝐺𝐺1consists of the columns of Ψ associated with 𝐺𝐺1, while 𝑇𝑇𝐺𝐺1
𝑓𝑓 consists of the rows of 𝑇𝑇𝑓𝑓 

associated with 𝐺𝐺1. 

 

 

 is responsible 
for the growth/decay of  the DMD modes while 
the imaginary parts bring about the oscillatory 
behaviour. For trend extraction, we look for 
sub-component(s) with low oscillation, i.e. the j-th 
sub-component 

𝑌𝑌𝑓𝑓 = Ψ
[
 
 
 𝜆𝜆1

𝐿𝐿𝑣𝑣1 𝜆𝜆1
𝐿𝐿+1𝑣𝑣1 𝜆𝜆1

𝐿𝐿+2𝑣𝑣1 ⋯ 𝜆𝜆1
𝐿𝐿+𝐹𝐹−1𝑣𝑣1 

𝜆𝜆2
𝐿𝐿𝑣𝑣2 𝜆𝜆2

𝐿𝐿+1𝑣𝑣2 𝜆𝜆2
𝐿𝐿+2𝑣𝑣2 ⋯ 𝜆𝜆2

𝐿𝐿+𝐹𝐹−1𝑣𝑣2 
⋮ ⋮ ⋮ ⋮ ⋮

𝜆𝜆𝐿𝐿−1
𝐿𝐿 𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1

𝐿𝐿+1𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1
𝐿𝐿+2𝑣𝑣𝐿𝐿−1 ⋯ 𝜆𝜆𝐿𝐿−1

𝐿𝐿+𝐹𝐹−1𝑣𝑣𝐿𝐿−1 ]
 
 
 
= ΨT𝑓𝑓. 

   
 

(15) 

Combining the reconstruction in Eqn. (14) and the forecast in Eqn. (15) gives 

𝑌𝑌 = [𝑌𝑌𝑟𝑟 𝑌𝑌𝑓𝑓] = Ψ[𝑇𝑇𝑟𝑟 𝑇𝑇𝑓𝑓]. (16) 

The reconstruction in Eqn. (14) can be grouped further into several sub-components such as 

trend, periodic component, and noise. To elucidate further, we write Eqn. (14) as a sum of three groups 

of matrices as follows: 

𝑌𝑌𝑟𝑟 = ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺1

+ ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺2

+ ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺3

 

= 𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑌̂𝑌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑌̂𝑌𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 

  
 
 
 (17) 

where 𝐺𝐺1 is the group of indices corresponds to trend component,  𝐺𝐺2 is the group of indices corresponds 

to periodic components, and 𝐺𝐺3 is the group of indices corresponds to minor components and noise. 

When constructing the groups, it is useful to consider the frequencies of the DMD modes which are 

defined as 

 𝜔𝜔𝑗𝑗 =
ln (𝜆𝜆𝑗𝑗)

𝛿𝛿𝛿𝛿 , ∀ 𝑗𝑗 ∈ {1,2,… , 𝐿𝐿 − 1}.    
(18) 

Here 𝛿𝛿𝛿𝛿 refers to the lag between samples of the time series. The real part of 𝜔𝜔𝑖𝑖 is responsible for the 

growth/decay of the DMD modes while the imaginary parts bring about the oscillatory behaviour. For 

trend extraction, we look for sub-component(s) with low oscillation, i.e. the 𝑗𝑗-th sub-component 

Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗 is a trend if 𝑖𝑖𝑖𝑖(𝜔𝜔𝑗𝑗) ≈ 0. Then, the evolution of the trend component for 𝑛𝑛 = 𝐿𝐿 + 1, 𝐿𝐿 +

2,… , 𝐿𝐿 + 𝐹𝐹, produces a forecast of the time dynamic of trend in the time series into 𝐹𝐹 time steps ahead 

given by 

𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑓𝑓 = Ψ𝐺𝐺1𝑇𝑇𝐺𝐺1

𝑓𝑓 , (19) 

where Ψ𝐺𝐺1consists of the columns of Ψ associated with 𝐺𝐺1, while 𝑇𝑇𝐺𝐺1
𝑓𝑓 consists of the rows of 𝑇𝑇𝑓𝑓 

associated with 𝐺𝐺1. 

 

 

 is a trend if  

𝑌𝑌𝑓𝑓 = Ψ
[
 
 
 𝜆𝜆1

𝐿𝐿𝑣𝑣1 𝜆𝜆1
𝐿𝐿+1𝑣𝑣1 𝜆𝜆1

𝐿𝐿+2𝑣𝑣1 ⋯ 𝜆𝜆1
𝐿𝐿+𝐹𝐹−1𝑣𝑣1 

𝜆𝜆2
𝐿𝐿𝑣𝑣2 𝜆𝜆2

𝐿𝐿+1𝑣𝑣2 𝜆𝜆2
𝐿𝐿+2𝑣𝑣2 ⋯ 𝜆𝜆2

𝐿𝐿+𝐹𝐹−1𝑣𝑣2 
⋮ ⋮ ⋮ ⋮ ⋮

𝜆𝜆𝐿𝐿−1
𝐿𝐿 𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1

𝐿𝐿+1𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1
𝐿𝐿+2𝑣𝑣𝐿𝐿−1 ⋯ 𝜆𝜆𝐿𝐿−1

𝐿𝐿+𝐹𝐹−1𝑣𝑣𝐿𝐿−1 ]
 
 
 
= ΨT𝑓𝑓. 

   
 

(15) 

Combining the reconstruction in Eqn. (14) and the forecast in Eqn. (15) gives 

𝑌𝑌 = [𝑌𝑌𝑟𝑟 𝑌𝑌𝑓𝑓] = Ψ[𝑇𝑇𝑟𝑟 𝑇𝑇𝑓𝑓]. (16) 

The reconstruction in Eqn. (14) can be grouped further into several sub-components such as 

trend, periodic component, and noise. To elucidate further, we write Eqn. (14) as a sum of three groups 

of matrices as follows: 

𝑌𝑌𝑟𝑟 = ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺1

+ ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺2

+ ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺3

 

= 𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑌̂𝑌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑌̂𝑌𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 

  
 
 
 (17) 

where 𝐺𝐺1 is the group of indices corresponds to trend component,  𝐺𝐺2 is the group of indices corresponds 

to periodic components, and 𝐺𝐺3 is the group of indices corresponds to minor components and noise. 

When constructing the groups, it is useful to consider the frequencies of the DMD modes which are 

defined as 

 𝜔𝜔𝑗𝑗 =
ln (𝜆𝜆𝑗𝑗)

𝛿𝛿𝛿𝛿 , ∀ 𝑗𝑗 ∈ {1,2,… , 𝐿𝐿 − 1}.    
(18) 

Here 𝛿𝛿𝛿𝛿 refers to the lag between samples of the time series. The real part of 𝜔𝜔𝑖𝑖 is responsible for the 

growth/decay of the DMD modes while the imaginary parts bring about the oscillatory behaviour. For 

trend extraction, we look for sub-component(s) with low oscillation, i.e. the 𝑗𝑗-th sub-component 

Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗 is a trend if 𝑖𝑖𝑖𝑖(𝜔𝜔𝑗𝑗) ≈ 0. Then, the evolution of the trend component for 𝑛𝑛 = 𝐿𝐿 + 1, 𝐿𝐿 +

2,… , 𝐿𝐿 + 𝐹𝐹, produces a forecast of the time dynamic of trend in the time series into 𝐹𝐹 time steps ahead 

given by 

𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑓𝑓 = Ψ𝐺𝐺1𝑇𝑇𝐺𝐺1

𝑓𝑓 , (19) 

where Ψ𝐺𝐺1consists of the columns of Ψ associated with 𝐺𝐺1, while 𝑇𝑇𝐺𝐺1
𝑓𝑓 consists of the rows of 𝑇𝑇𝑓𝑓 

associated with 𝐺𝐺1. 

 

 

 
Then, the evolution of  the trend component for 

𝑌𝑌𝑓𝑓 = Ψ
[
 
 
 𝜆𝜆1

𝐿𝐿𝑣𝑣1 𝜆𝜆1
𝐿𝐿+1𝑣𝑣1 𝜆𝜆1

𝐿𝐿+2𝑣𝑣1 ⋯ 𝜆𝜆1
𝐿𝐿+𝐹𝐹−1𝑣𝑣1 

𝜆𝜆2
𝐿𝐿𝑣𝑣2 𝜆𝜆2

𝐿𝐿+1𝑣𝑣2 𝜆𝜆2
𝐿𝐿+2𝑣𝑣2 ⋯ 𝜆𝜆2

𝐿𝐿+𝐹𝐹−1𝑣𝑣2 
⋮ ⋮ ⋮ ⋮ ⋮

𝜆𝜆𝐿𝐿−1
𝐿𝐿 𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1

𝐿𝐿+1𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1
𝐿𝐿+2𝑣𝑣𝐿𝐿−1 ⋯ 𝜆𝜆𝐿𝐿−1

𝐿𝐿+𝐹𝐹−1𝑣𝑣𝐿𝐿−1 ]
 
 
 
= ΨT𝑓𝑓. 

   
 

(15) 

Combining the reconstruction in Eqn. (14) and the forecast in Eqn. (15) gives 

𝑌𝑌 = [𝑌𝑌𝑟𝑟 𝑌𝑌𝑓𝑓] = Ψ[𝑇𝑇𝑟𝑟 𝑇𝑇𝑓𝑓]. (16) 

The reconstruction in Eqn. (14) can be grouped further into several sub-components such as 

trend, periodic component, and noise. To elucidate further, we write Eqn. (14) as a sum of three groups 

of matrices as follows: 

𝑌𝑌𝑟𝑟 = ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺1

+ ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺2

+ ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺3

 

= 𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑌̂𝑌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑌̂𝑌𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 

  
 
 
 (17) 

where 𝐺𝐺1 is the group of indices corresponds to trend component,  𝐺𝐺2 is the group of indices corresponds 

to periodic components, and 𝐺𝐺3 is the group of indices corresponds to minor components and noise. 

When constructing the groups, it is useful to consider the frequencies of the DMD modes which are 

defined as 

 𝜔𝜔𝑗𝑗 =
ln (𝜆𝜆𝑗𝑗)

𝛿𝛿𝛿𝛿 , ∀ 𝑗𝑗 ∈ {1,2,… , 𝐿𝐿 − 1}.    
(18) 

Here 𝛿𝛿𝛿𝛿 refers to the lag between samples of the time series. The real part of 𝜔𝜔𝑖𝑖 is responsible for the 

growth/decay of the DMD modes while the imaginary parts bring about the oscillatory behaviour. For 

trend extraction, we look for sub-component(s) with low oscillation, i.e. the 𝑗𝑗-th sub-component 

Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗 is a trend if 𝑖𝑖𝑖𝑖(𝜔𝜔𝑗𝑗) ≈ 0. Then, the evolution of the trend component for 𝑛𝑛 = 𝐿𝐿 + 1, 𝐿𝐿 +

2,… , 𝐿𝐿 + 𝐹𝐹, produces a forecast of the time dynamic of trend in the time series into 𝐹𝐹 time steps ahead 

given by 

𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑓𝑓 = Ψ𝐺𝐺1𝑇𝑇𝐺𝐺1

𝑓𝑓 , (19) 

where Ψ𝐺𝐺1consists of the columns of Ψ associated with 𝐺𝐺1, while 𝑇𝑇𝐺𝐺1
𝑓𝑓 consists of the rows of 𝑇𝑇𝑓𝑓 

associated with 𝐺𝐺1. 

 

 

𝑌𝑌𝑓𝑓 = Ψ
[
 
 
 𝜆𝜆1

𝐿𝐿𝑣𝑣1 𝜆𝜆1
𝐿𝐿+1𝑣𝑣1 𝜆𝜆1

𝐿𝐿+2𝑣𝑣1 ⋯ 𝜆𝜆1
𝐿𝐿+𝐹𝐹−1𝑣𝑣1 

𝜆𝜆2
𝐿𝐿𝑣𝑣2 𝜆𝜆2

𝐿𝐿+1𝑣𝑣2 𝜆𝜆2
𝐿𝐿+2𝑣𝑣2 ⋯ 𝜆𝜆2

𝐿𝐿+𝐹𝐹−1𝑣𝑣2 
⋮ ⋮ ⋮ ⋮ ⋮

𝜆𝜆𝐿𝐿−1
𝐿𝐿 𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1
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𝐿𝐿+2𝑣𝑣𝐿𝐿−1 ⋯ 𝜆𝜆𝐿𝐿−1

𝐿𝐿+𝐹𝐹−1𝑣𝑣𝐿𝐿−1 ]
 
 
 
= ΨT𝑓𝑓. 

   
 

(15) 

Combining the reconstruction in Eqn. (14) and the forecast in Eqn. (15) gives 

𝑌𝑌 = [𝑌𝑌𝑟𝑟 𝑌𝑌𝑓𝑓] = Ψ[𝑇𝑇𝑟𝑟 𝑇𝑇𝑓𝑓]. (16) 

The reconstruction in Eqn. (14) can be grouped further into several sub-components such as 

trend, periodic component, and noise. To elucidate further, we write Eqn. (14) as a sum of three groups 

of matrices as follows: 

𝑌𝑌𝑟𝑟 = ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺1

+ ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺2

+ ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺3

 

= 𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑌̂𝑌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑌̂𝑌𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 

  
 
 
 (17) 

where 𝐺𝐺1 is the group of indices corresponds to trend component,  𝐺𝐺2 is the group of indices corresponds 

to periodic components, and 𝐺𝐺3 is the group of indices corresponds to minor components and noise. 

When constructing the groups, it is useful to consider the frequencies of the DMD modes which are 

defined as 

 𝜔𝜔𝑗𝑗 =
ln (𝜆𝜆𝑗𝑗)

𝛿𝛿𝛿𝛿 , ∀ 𝑗𝑗 ∈ {1,2,… , 𝐿𝐿 − 1}.    
(18) 

Here 𝛿𝛿𝛿𝛿 refers to the lag between samples of the time series. The real part of 𝜔𝜔𝑖𝑖 is responsible for the 

growth/decay of the DMD modes while the imaginary parts bring about the oscillatory behaviour. For 

trend extraction, we look for sub-component(s) with low oscillation, i.e. the 𝑗𝑗-th sub-component 

Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗 is a trend if 𝑖𝑖𝑖𝑖(𝜔𝜔𝑗𝑗) ≈ 0. Then, the evolution of the trend component for 𝑛𝑛 = 𝐿𝐿 + 1, 𝐿𝐿 +

2,… , 𝐿𝐿 + 𝐹𝐹, produces a forecast of the time dynamic of trend in the time series into 𝐹𝐹 time steps ahead 

given by 

𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑓𝑓 = Ψ𝐺𝐺1𝑇𝑇𝐺𝐺1

𝑓𝑓 , (19) 

where Ψ𝐺𝐺1consists of the columns of Ψ associated with 𝐺𝐺1, while 𝑇𝑇𝐺𝐺1
𝑓𝑓 consists of the rows of 𝑇𝑇𝑓𝑓 

associated with 𝐺𝐺1. 

 

 

, produces a forecast of  
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the time dynamic of  trend in the time series into 

𝑌𝑌𝑓𝑓 = Ψ
[
 
 
 𝜆𝜆1

𝐿𝐿𝑣𝑣1 𝜆𝜆1
𝐿𝐿+1𝑣𝑣1 𝜆𝜆1

𝐿𝐿+2𝑣𝑣1 ⋯ 𝜆𝜆1
𝐿𝐿+𝐹𝐹−1𝑣𝑣1 

𝜆𝜆2
𝐿𝐿𝑣𝑣2 𝜆𝜆2

𝐿𝐿+1𝑣𝑣2 𝜆𝜆2
𝐿𝐿+2𝑣𝑣2 ⋯ 𝜆𝜆2

𝐿𝐿+𝐹𝐹−1𝑣𝑣2 
⋮ ⋮ ⋮ ⋮ ⋮

𝜆𝜆𝐿𝐿−1
𝐿𝐿 𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1

𝐿𝐿+1𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1
𝐿𝐿+2𝑣𝑣𝐿𝐿−1 ⋯ 𝜆𝜆𝐿𝐿−1

𝐿𝐿+𝐹𝐹−1𝑣𝑣𝐿𝐿−1 ]
 
 
 
= ΨT𝑓𝑓. 

   
 

(15) 

Combining the reconstruction in Eqn. (14) and the forecast in Eqn. (15) gives 

𝑌𝑌 = [𝑌𝑌𝑟𝑟 𝑌𝑌𝑓𝑓] = Ψ[𝑇𝑇𝑟𝑟 𝑇𝑇𝑓𝑓]. (16) 

The reconstruction in Eqn. (14) can be grouped further into several sub-components such as 

trend, periodic component, and noise. To elucidate further, we write Eqn. (14) as a sum of three groups 

of matrices as follows: 

𝑌𝑌𝑟𝑟 = ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺1

+ ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺2

+ ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺3

 

= 𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑌̂𝑌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑌̂𝑌𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 

  
 
 
 (17) 

where 𝐺𝐺1 is the group of indices corresponds to trend component,  𝐺𝐺2 is the group of indices corresponds 

to periodic components, and 𝐺𝐺3 is the group of indices corresponds to minor components and noise. 

When constructing the groups, it is useful to consider the frequencies of the DMD modes which are 

defined as 

 𝜔𝜔𝑗𝑗 =
ln (𝜆𝜆𝑗𝑗)

𝛿𝛿𝛿𝛿 , ∀ 𝑗𝑗 ∈ {1,2,… , 𝐿𝐿 − 1}.    
(18) 

Here 𝛿𝛿𝛿𝛿 refers to the lag between samples of the time series. The real part of 𝜔𝜔𝑖𝑖 is responsible for the 

growth/decay of the DMD modes while the imaginary parts bring about the oscillatory behaviour. For 

trend extraction, we look for sub-component(s) with low oscillation, i.e. the 𝑗𝑗-th sub-component 

Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗 is a trend if 𝑖𝑖𝑖𝑖(𝜔𝜔𝑗𝑗) ≈ 0. Then, the evolution of the trend component for 𝑛𝑛 = 𝐿𝐿 + 1, 𝐿𝐿 +

2,… , 𝐿𝐿 + 𝐹𝐹, produces a forecast of the time dynamic of trend in the time series into 𝐹𝐹 time steps ahead 

given by 

𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑓𝑓 = Ψ𝐺𝐺1𝑇𝑇𝐺𝐺1

𝑓𝑓 , (19) 

where Ψ𝐺𝐺1consists of the columns of Ψ associated with 𝐺𝐺1, while 𝑇𝑇𝐺𝐺1
𝑓𝑓 consists of the rows of 𝑇𝑇𝑓𝑓 

associated with 𝐺𝐺1. 

 

 

 time steps ahead given by

𝑌𝑌𝑓𝑓 = Ψ
[
 
 
 𝜆𝜆1

𝐿𝐿𝑣𝑣1 𝜆𝜆1
𝐿𝐿+1𝑣𝑣1 𝜆𝜆1

𝐿𝐿+2𝑣𝑣1 ⋯ 𝜆𝜆1
𝐿𝐿+𝐹𝐹−1𝑣𝑣1 

𝜆𝜆2
𝐿𝐿𝑣𝑣2 𝜆𝜆2

𝐿𝐿+1𝑣𝑣2 𝜆𝜆2
𝐿𝐿+2𝑣𝑣2 ⋯ 𝜆𝜆2

𝐿𝐿+𝐹𝐹−1𝑣𝑣2 
⋮ ⋮ ⋮ ⋮ ⋮

𝜆𝜆𝐿𝐿−1
𝐿𝐿 𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1

𝐿𝐿+1𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1
𝐿𝐿+2𝑣𝑣𝐿𝐿−1 ⋯ 𝜆𝜆𝐿𝐿−1

𝐿𝐿+𝐹𝐹−1𝑣𝑣𝐿𝐿−1 ]
 
 
 
= ΨT𝑓𝑓. 

   
 

(15) 

Combining the reconstruction in Eqn. (14) and the forecast in Eqn. (15) gives 

𝑌𝑌 = [𝑌𝑌𝑟𝑟 𝑌𝑌𝑓𝑓] = Ψ[𝑇𝑇𝑟𝑟 𝑇𝑇𝑓𝑓]. (16) 

The reconstruction in Eqn. (14) can be grouped further into several sub-components such as 

trend, periodic component, and noise. To elucidate further, we write Eqn. (14) as a sum of three groups 

of matrices as follows: 

𝑌𝑌𝑟𝑟 = ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺1

+ ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺2

+ ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺3

 

= 𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑌̂𝑌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑌̂𝑌𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 

  
 
 
 (17) 

where 𝐺𝐺1 is the group of indices corresponds to trend component,  𝐺𝐺2 is the group of indices corresponds 

to periodic components, and 𝐺𝐺3 is the group of indices corresponds to minor components and noise. 

When constructing the groups, it is useful to consider the frequencies of the DMD modes which are 

defined as 

 𝜔𝜔𝑗𝑗 =
ln (𝜆𝜆𝑗𝑗)

𝛿𝛿𝛿𝛿 , ∀ 𝑗𝑗 ∈ {1,2,… , 𝐿𝐿 − 1}.    
(18) 

Here 𝛿𝛿𝛿𝛿 refers to the lag between samples of the time series. The real part of 𝜔𝜔𝑖𝑖 is responsible for the 

growth/decay of the DMD modes while the imaginary parts bring about the oscillatory behaviour. For 

trend extraction, we look for sub-component(s) with low oscillation, i.e. the 𝑗𝑗-th sub-component 

Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗 is a trend if 𝑖𝑖𝑖𝑖(𝜔𝜔𝑗𝑗) ≈ 0. Then, the evolution of the trend component for 𝑛𝑛 = 𝐿𝐿 + 1, 𝐿𝐿 +

2,… , 𝐿𝐿 + 𝐹𝐹, produces a forecast of the time dynamic of trend in the time series into 𝐹𝐹 time steps ahead 

given by 

𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑓𝑓 = Ψ𝐺𝐺1𝑇𝑇𝐺𝐺1

𝑓𝑓 , (19) 

where Ψ𝐺𝐺1consists of the columns of Ψ associated with 𝐺𝐺1, while 𝑇𝑇𝐺𝐺1
𝑓𝑓 consists of the rows of 𝑇𝑇𝑓𝑓 

associated with 𝐺𝐺1. 

 

 

			      (19)

where 

𝑌𝑌𝑓𝑓 = Ψ
[
 
 
 𝜆𝜆1

𝐿𝐿𝑣𝑣1 𝜆𝜆1
𝐿𝐿+1𝑣𝑣1 𝜆𝜆1

𝐿𝐿+2𝑣𝑣1 ⋯ 𝜆𝜆1
𝐿𝐿+𝐹𝐹−1𝑣𝑣1 

𝜆𝜆2
𝐿𝐿𝑣𝑣2 𝜆𝜆2

𝐿𝐿+1𝑣𝑣2 𝜆𝜆2
𝐿𝐿+2𝑣𝑣2 ⋯ 𝜆𝜆2

𝐿𝐿+𝐹𝐹−1𝑣𝑣2 
⋮ ⋮ ⋮ ⋮ ⋮

𝜆𝜆𝐿𝐿−1
𝐿𝐿 𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1

𝐿𝐿+1𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1
𝐿𝐿+2𝑣𝑣𝐿𝐿−1 ⋯ 𝜆𝜆𝐿𝐿−1

𝐿𝐿+𝐹𝐹−1𝑣𝑣𝐿𝐿−1 ]
 
 
 
= ΨT𝑓𝑓. 

   
 

(15) 

Combining the reconstruction in Eqn. (14) and the forecast in Eqn. (15) gives 

𝑌𝑌 = [𝑌𝑌𝑟𝑟 𝑌𝑌𝑓𝑓] = Ψ[𝑇𝑇𝑟𝑟 𝑇𝑇𝑓𝑓]. (16) 

The reconstruction in Eqn. (14) can be grouped further into several sub-components such as 

trend, periodic component, and noise. To elucidate further, we write Eqn. (14) as a sum of three groups 

of matrices as follows: 

𝑌𝑌𝑟𝑟 = ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺1

+ ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺2

+ ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺3

 

= 𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑌̂𝑌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑌̂𝑌𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 

  
 
 
 (17) 

where 𝐺𝐺1 is the group of indices corresponds to trend component,  𝐺𝐺2 is the group of indices corresponds 

to periodic components, and 𝐺𝐺3 is the group of indices corresponds to minor components and noise. 

When constructing the groups, it is useful to consider the frequencies of the DMD modes which are 

defined as 

 𝜔𝜔𝑗𝑗 =
ln (𝜆𝜆𝑗𝑗)

𝛿𝛿𝛿𝛿 , ∀ 𝑗𝑗 ∈ {1,2,… , 𝐿𝐿 − 1}.    
(18) 

Here 𝛿𝛿𝛿𝛿 refers to the lag between samples of the time series. The real part of 𝜔𝜔𝑖𝑖 is responsible for the 

growth/decay of the DMD modes while the imaginary parts bring about the oscillatory behaviour. For 

trend extraction, we look for sub-component(s) with low oscillation, i.e. the 𝑗𝑗-th sub-component 

Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗 is a trend if 𝑖𝑖𝑖𝑖(𝜔𝜔𝑗𝑗) ≈ 0. Then, the evolution of the trend component for 𝑛𝑛 = 𝐿𝐿 + 1, 𝐿𝐿 +

2,… , 𝐿𝐿 + 𝐹𝐹, produces a forecast of the time dynamic of trend in the time series into 𝐹𝐹 time steps ahead 

given by 

𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑓𝑓 = Ψ𝐺𝐺1𝑇𝑇𝐺𝐺1

𝑓𝑓 , (19) 

where Ψ𝐺𝐺1consists of the columns of Ψ associated with 𝐺𝐺1, while 𝑇𝑇𝐺𝐺1
𝑓𝑓 consists of the rows of 𝑇𝑇𝑓𝑓 

associated with 𝐺𝐺1. 

 

 

 consists of  the columns of  

𝑌𝑌𝑓𝑓 = Ψ
[
 
 
 𝜆𝜆1

𝐿𝐿𝑣𝑣1 𝜆𝜆1
𝐿𝐿+1𝑣𝑣1 𝜆𝜆1

𝐿𝐿+2𝑣𝑣1 ⋯ 𝜆𝜆1
𝐿𝐿+𝐹𝐹−1𝑣𝑣1 

𝜆𝜆2
𝐿𝐿𝑣𝑣2 𝜆𝜆2

𝐿𝐿+1𝑣𝑣2 𝜆𝜆2
𝐿𝐿+2𝑣𝑣2 ⋯ 𝜆𝜆2

𝐿𝐿+𝐹𝐹−1𝑣𝑣2 
⋮ ⋮ ⋮ ⋮ ⋮

𝜆𝜆𝐿𝐿−1
𝐿𝐿 𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1

𝐿𝐿+1𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1
𝐿𝐿+2𝑣𝑣𝐿𝐿−1 ⋯ 𝜆𝜆𝐿𝐿−1

𝐿𝐿+𝐹𝐹−1𝑣𝑣𝐿𝐿−1 ]
 
 
 
= ΨT𝑓𝑓. 

   
 

(15) 

Combining the reconstruction in Eqn. (14) and the forecast in Eqn. (15) gives 

𝑌𝑌 = [𝑌𝑌𝑟𝑟 𝑌𝑌𝑓𝑓] = Ψ[𝑇𝑇𝑟𝑟 𝑇𝑇𝑓𝑓]. (16) 

The reconstruction in Eqn. (14) can be grouped further into several sub-components such as 

trend, periodic component, and noise. To elucidate further, we write Eqn. (14) as a sum of three groups 

of matrices as follows: 

𝑌𝑌𝑟𝑟 = ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺1

+ ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺2

+ ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺3

 

= 𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑌̂𝑌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑌̂𝑌𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 

  
 
 
 (17) 

where 𝐺𝐺1 is the group of indices corresponds to trend component,  𝐺𝐺2 is the group of indices corresponds 

to periodic components, and 𝐺𝐺3 is the group of indices corresponds to minor components and noise. 

When constructing the groups, it is useful to consider the frequencies of the DMD modes which are 

defined as 

 𝜔𝜔𝑗𝑗 =
ln (𝜆𝜆𝑗𝑗)

𝛿𝛿𝛿𝛿 , ∀ 𝑗𝑗 ∈ {1,2,… , 𝐿𝐿 − 1}.    
(18) 

Here 𝛿𝛿𝛿𝛿 refers to the lag between samples of the time series. The real part of 𝜔𝜔𝑖𝑖 is responsible for the 

growth/decay of the DMD modes while the imaginary parts bring about the oscillatory behaviour. For 

trend extraction, we look for sub-component(s) with low oscillation, i.e. the 𝑗𝑗-th sub-component 

Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗 is a trend if 𝑖𝑖𝑖𝑖(𝜔𝜔𝑗𝑗) ≈ 0. Then, the evolution of the trend component for 𝑛𝑛 = 𝐿𝐿 + 1, 𝐿𝐿 +

2,… , 𝐿𝐿 + 𝐹𝐹, produces a forecast of the time dynamic of trend in the time series into 𝐹𝐹 time steps ahead 

given by 

𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑓𝑓 = Ψ𝐺𝐺1𝑇𝑇𝐺𝐺1

𝑓𝑓 , (19) 

where Ψ𝐺𝐺1consists of the columns of Ψ associated with 𝐺𝐺1, while 𝑇𝑇𝐺𝐺1
𝑓𝑓 consists of the rows of 𝑇𝑇𝑓𝑓 

associated with 𝐺𝐺1. 

 

 

 associated 
with 

𝑌𝑌𝑓𝑓 = Ψ
[
 
 
 𝜆𝜆1

𝐿𝐿𝑣𝑣1 𝜆𝜆1
𝐿𝐿+1𝑣𝑣1 𝜆𝜆1

𝐿𝐿+2𝑣𝑣1 ⋯ 𝜆𝜆1
𝐿𝐿+𝐹𝐹−1𝑣𝑣1 

𝜆𝜆2
𝐿𝐿𝑣𝑣2 𝜆𝜆2

𝐿𝐿+1𝑣𝑣2 𝜆𝜆2
𝐿𝐿+2𝑣𝑣2 ⋯ 𝜆𝜆2

𝐿𝐿+𝐹𝐹−1𝑣𝑣2 
⋮ ⋮ ⋮ ⋮ ⋮

𝜆𝜆𝐿𝐿−1
𝐿𝐿 𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1

𝐿𝐿+1𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1
𝐿𝐿+2𝑣𝑣𝐿𝐿−1 ⋯ 𝜆𝜆𝐿𝐿−1

𝐿𝐿+𝐹𝐹−1𝑣𝑣𝐿𝐿−1 ]
 
 
 
= ΨT𝑓𝑓. 

   
 

(15) 

Combining the reconstruction in Eqn. (14) and the forecast in Eqn. (15) gives 

𝑌𝑌 = [𝑌𝑌𝑟𝑟 𝑌𝑌𝑓𝑓] = Ψ[𝑇𝑇𝑟𝑟 𝑇𝑇𝑓𝑓]. (16) 

The reconstruction in Eqn. (14) can be grouped further into several sub-components such as 

trend, periodic component, and noise. To elucidate further, we write Eqn. (14) as a sum of three groups 

of matrices as follows: 

𝑌𝑌𝑟𝑟 = ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺1

+ ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺2

+ ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺3

 

= 𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑌̂𝑌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑌̂𝑌𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 

  
 
 
 (17) 

where 𝐺𝐺1 is the group of indices corresponds to trend component,  𝐺𝐺2 is the group of indices corresponds 

to periodic components, and 𝐺𝐺3 is the group of indices corresponds to minor components and noise. 

When constructing the groups, it is useful to consider the frequencies of the DMD modes which are 

defined as 

 𝜔𝜔𝑗𝑗 =
ln (𝜆𝜆𝑗𝑗)

𝛿𝛿𝛿𝛿 , ∀ 𝑗𝑗 ∈ {1,2,… , 𝐿𝐿 − 1}.    
(18) 

Here 𝛿𝛿𝛿𝛿 refers to the lag between samples of the time series. The real part of 𝜔𝜔𝑖𝑖 is responsible for the 

growth/decay of the DMD modes while the imaginary parts bring about the oscillatory behaviour. For 

trend extraction, we look for sub-component(s) with low oscillation, i.e. the 𝑗𝑗-th sub-component 

Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗 is a trend if 𝑖𝑖𝑖𝑖(𝜔𝜔𝑗𝑗) ≈ 0. Then, the evolution of the trend component for 𝑛𝑛 = 𝐿𝐿 + 1, 𝐿𝐿 +

2,… , 𝐿𝐿 + 𝐹𝐹, produces a forecast of the time dynamic of trend in the time series into 𝐹𝐹 time steps ahead 

given by 

𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑓𝑓 = Ψ𝐺𝐺1𝑇𝑇𝐺𝐺1

𝑓𝑓 , (19) 

where Ψ𝐺𝐺1consists of the columns of Ψ associated with 𝐺𝐺1, while 𝑇𝑇𝐺𝐺1
𝑓𝑓 consists of the rows of 𝑇𝑇𝑓𝑓 

associated with 𝐺𝐺1. 

 

 

, while 

𝑌𝑌𝑓𝑓 = Ψ
[
 
 
 𝜆𝜆1

𝐿𝐿𝑣𝑣1 𝜆𝜆1
𝐿𝐿+1𝑣𝑣1 𝜆𝜆1

𝐿𝐿+2𝑣𝑣1 ⋯ 𝜆𝜆1
𝐿𝐿+𝐹𝐹−1𝑣𝑣1 

𝜆𝜆2
𝐿𝐿𝑣𝑣2 𝜆𝜆2

𝐿𝐿+1𝑣𝑣2 𝜆𝜆2
𝐿𝐿+2𝑣𝑣2 ⋯ 𝜆𝜆2

𝐿𝐿+𝐹𝐹−1𝑣𝑣2 
⋮ ⋮ ⋮ ⋮ ⋮

𝜆𝜆𝐿𝐿−1
𝐿𝐿 𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1

𝐿𝐿+1𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1
𝐿𝐿+2𝑣𝑣𝐿𝐿−1 ⋯ 𝜆𝜆𝐿𝐿−1

𝐿𝐿+𝐹𝐹−1𝑣𝑣𝐿𝐿−1 ]
 
 
 
= ΨT𝑓𝑓. 

   
 

(15) 

Combining the reconstruction in Eqn. (14) and the forecast in Eqn. (15) gives 

𝑌𝑌 = [𝑌𝑌𝑟𝑟 𝑌𝑌𝑓𝑓] = Ψ[𝑇𝑇𝑟𝑟 𝑇𝑇𝑓𝑓]. (16) 

The reconstruction in Eqn. (14) can be grouped further into several sub-components such as 

trend, periodic component, and noise. To elucidate further, we write Eqn. (14) as a sum of three groups 

of matrices as follows: 

𝑌𝑌𝑟𝑟 = ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺1

+ ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺2

+ ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺3

 

= 𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑌̂𝑌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑌̂𝑌𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 

  
 
 
 (17) 

where 𝐺𝐺1 is the group of indices corresponds to trend component,  𝐺𝐺2 is the group of indices corresponds 

to periodic components, and 𝐺𝐺3 is the group of indices corresponds to minor components and noise. 

When constructing the groups, it is useful to consider the frequencies of the DMD modes which are 

defined as 

 𝜔𝜔𝑗𝑗 =
ln (𝜆𝜆𝑗𝑗)

𝛿𝛿𝛿𝛿 , ∀ 𝑗𝑗 ∈ {1,2,… , 𝐿𝐿 − 1}.    
(18) 

Here 𝛿𝛿𝛿𝛿 refers to the lag between samples of the time series. The real part of 𝜔𝜔𝑖𝑖 is responsible for the 

growth/decay of the DMD modes while the imaginary parts bring about the oscillatory behaviour. For 

trend extraction, we look for sub-component(s) with low oscillation, i.e. the 𝑗𝑗-th sub-component 

Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗 is a trend if 𝑖𝑖𝑖𝑖(𝜔𝜔𝑗𝑗) ≈ 0. Then, the evolution of the trend component for 𝑛𝑛 = 𝐿𝐿 + 1, 𝐿𝐿 +

2,… , 𝐿𝐿 + 𝐹𝐹, produces a forecast of the time dynamic of trend in the time series into 𝐹𝐹 time steps ahead 

given by 

𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑓𝑓 = Ψ𝐺𝐺1𝑇𝑇𝐺𝐺1

𝑓𝑓 , (19) 

where Ψ𝐺𝐺1consists of the columns of Ψ associated with 𝐺𝐺1, while 𝑇𝑇𝐺𝐺1
𝑓𝑓 consists of the rows of 𝑇𝑇𝑓𝑓 

associated with 𝐺𝐺1. 

 

 

 consists of  the rows of  

𝑌𝑌𝑓𝑓 = Ψ
[
 
 
 𝜆𝜆1

𝐿𝐿𝑣𝑣1 𝜆𝜆1
𝐿𝐿+1𝑣𝑣1 𝜆𝜆1

𝐿𝐿+2𝑣𝑣1 ⋯ 𝜆𝜆1
𝐿𝐿+𝐹𝐹−1𝑣𝑣1 

𝜆𝜆2
𝐿𝐿𝑣𝑣2 𝜆𝜆2

𝐿𝐿+1𝑣𝑣2 𝜆𝜆2
𝐿𝐿+2𝑣𝑣2 ⋯ 𝜆𝜆2

𝐿𝐿+𝐹𝐹−1𝑣𝑣2 
⋮ ⋮ ⋮ ⋮ ⋮

𝜆𝜆𝐿𝐿−1
𝐿𝐿 𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1

𝐿𝐿+1𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1
𝐿𝐿+2𝑣𝑣𝐿𝐿−1 ⋯ 𝜆𝜆𝐿𝐿−1

𝐿𝐿+𝐹𝐹−1𝑣𝑣𝐿𝐿−1 ]
 
 
 
= ΨT𝑓𝑓. 

   
 

(15) 

Combining the reconstruction in Eqn. (14) and the forecast in Eqn. (15) gives 

𝑌𝑌 = [𝑌𝑌𝑟𝑟 𝑌𝑌𝑓𝑓] = Ψ[𝑇𝑇𝑟𝑟 𝑇𝑇𝑓𝑓]. (16) 

The reconstruction in Eqn. (14) can be grouped further into several sub-components such as 

trend, periodic component, and noise. To elucidate further, we write Eqn. (14) as a sum of three groups 

of matrices as follows: 

𝑌𝑌𝑟𝑟 = ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺1

+ ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺2

+ ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺3

 

= 𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑌̂𝑌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑌̂𝑌𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 

  
 
 
 (17) 

where 𝐺𝐺1 is the group of indices corresponds to trend component,  𝐺𝐺2 is the group of indices corresponds 

to periodic components, and 𝐺𝐺3 is the group of indices corresponds to minor components and noise. 

When constructing the groups, it is useful to consider the frequencies of the DMD modes which are 

defined as 

 𝜔𝜔𝑗𝑗 =
ln (𝜆𝜆𝑗𝑗)

𝛿𝛿𝛿𝛿 , ∀ 𝑗𝑗 ∈ {1,2,… , 𝐿𝐿 − 1}.    
(18) 

Here 𝛿𝛿𝛿𝛿 refers to the lag between samples of the time series. The real part of 𝜔𝜔𝑖𝑖 is responsible for the 

growth/decay of the DMD modes while the imaginary parts bring about the oscillatory behaviour. For 

trend extraction, we look for sub-component(s) with low oscillation, i.e. the 𝑗𝑗-th sub-component 

Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗 is a trend if 𝑖𝑖𝑖𝑖(𝜔𝜔𝑗𝑗) ≈ 0. Then, the evolution of the trend component for 𝑛𝑛 = 𝐿𝐿 + 1, 𝐿𝐿 +

2,… , 𝐿𝐿 + 𝐹𝐹, produces a forecast of the time dynamic of trend in the time series into 𝐹𝐹 time steps ahead 

given by 

𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑓𝑓 = Ψ𝐺𝐺1𝑇𝑇𝐺𝐺1

𝑓𝑓 , (19) 

where Ψ𝐺𝐺1consists of the columns of Ψ associated with 𝐺𝐺1, while 𝑇𝑇𝐺𝐺1
𝑓𝑓 consists of the rows of 𝑇𝑇𝑓𝑓 

associated with 𝐺𝐺1. 

 

 

 
associated with 

𝑌𝑌𝑓𝑓 = Ψ
[
 
 
 𝜆𝜆1

𝐿𝐿𝑣𝑣1 𝜆𝜆1
𝐿𝐿+1𝑣𝑣1 𝜆𝜆1

𝐿𝐿+2𝑣𝑣1 ⋯ 𝜆𝜆1
𝐿𝐿+𝐹𝐹−1𝑣𝑣1 

𝜆𝜆2
𝐿𝐿𝑣𝑣2 𝜆𝜆2

𝐿𝐿+1𝑣𝑣2 𝜆𝜆2
𝐿𝐿+2𝑣𝑣2 ⋯ 𝜆𝜆2

𝐿𝐿+𝐹𝐹−1𝑣𝑣2 
⋮ ⋮ ⋮ ⋮ ⋮

𝜆𝜆𝐿𝐿−1
𝐿𝐿 𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1

𝐿𝐿+1𝑣𝑣𝐿𝐿−1 𝜆𝜆𝐿𝐿−1
𝐿𝐿+2𝑣𝑣𝐿𝐿−1 ⋯ 𝜆𝜆𝐿𝐿−1

𝐿𝐿+𝐹𝐹−1𝑣𝑣𝐿𝐿−1 ]
 
 
 
= ΨT𝑓𝑓. 

   
 

(15) 

Combining the reconstruction in Eqn. (14) and the forecast in Eqn. (15) gives 

𝑌𝑌 = [𝑌𝑌𝑟𝑟 𝑌𝑌𝑓𝑓] = Ψ[𝑇𝑇𝑟𝑟 𝑇𝑇𝑓𝑓]. (16) 

The reconstruction in Eqn. (14) can be grouped further into several sub-components such as 

trend, periodic component, and noise. To elucidate further, we write Eqn. (14) as a sum of three groups 

of matrices as follows: 

𝑌𝑌𝑟𝑟 = ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺1

+ ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺2

+ ∑ Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗

𝑗𝑗∈𝐺𝐺3

 

= 𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑌̂𝑌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑌̂𝑌𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 

  
 
 
 (17) 

where 𝐺𝐺1 is the group of indices corresponds to trend component,  𝐺𝐺2 is the group of indices corresponds 

to periodic components, and 𝐺𝐺3 is the group of indices corresponds to minor components and noise. 

When constructing the groups, it is useful to consider the frequencies of the DMD modes which are 

defined as 

 𝜔𝜔𝑗𝑗 =
ln (𝜆𝜆𝑗𝑗)

𝛿𝛿𝛿𝛿 , ∀ 𝑗𝑗 ∈ {1,2,… , 𝐿𝐿 − 1}.    
(18) 

Here 𝛿𝛿𝛿𝛿 refers to the lag between samples of the time series. The real part of 𝜔𝜔𝑖𝑖 is responsible for the 

growth/decay of the DMD modes while the imaginary parts bring about the oscillatory behaviour. For 

trend extraction, we look for sub-component(s) with low oscillation, i.e. the 𝑗𝑗-th sub-component 

Ψ𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛−1𝑣𝑣𝑗𝑗 is a trend if 𝑖𝑖𝑖𝑖(𝜔𝜔𝑗𝑗) ≈ 0. Then, the evolution of the trend component for 𝑛𝑛 = 𝐿𝐿 + 1, 𝐿𝐿 +

2,… , 𝐿𝐿 + 𝐹𝐹, produces a forecast of the time dynamic of trend in the time series into 𝐹𝐹 time steps ahead 

given by 

𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑓𝑓 = Ψ𝐺𝐺1𝑇𝑇𝐺𝐺1

𝑓𝑓 , (19) 

where Ψ𝐺𝐺1consists of the columns of Ψ associated with 𝐺𝐺1, while 𝑇𝑇𝐺𝐺1
𝑓𝑓 consists of the rows of 𝑇𝑇𝑓𝑓 

associated with 𝐺𝐺1. 

 

 

.

2.2.2 Diagonal averaging, time series 
reconstruction and time stamp delay

Similar to the Singular Spectrum Analysis (SSA), a 
diagonal averaging of  matrix 

2.2.2 Diagonal averaging, time series reconstruction and time stamp delay 

Similar to the Singular Spectrum Analysis (SSA), a diagonal averaging of matrix 𝑌𝑌 in Eqn. (16) is 

needed to transform it into a time series of length 𝑙𝑙 + 𝐹𝐹 to produce a reconstruction of the trend 

component of the time series and the 𝐹𝐹-steps ahead forecast of the trend. Let 𝑦̂𝑦𝑖𝑖𝑖𝑖 , 1 ≤ 𝑖𝑖 ≤ 𝐾𝐾, 1 ≤ 𝑗𝑗 <

𝐿𝐿 + 𝐹𝐹 − 1 be the entries of  𝑌𝑌, 𝐿𝐿∗ = 𝑚𝑚𝑚𝑚𝑚𝑚(𝐿𝐿 + 𝐹𝐹 − 1,𝐾𝐾), and 𝐾𝐾∗ = 𝑚𝑚𝑚𝑚𝑚𝑚(𝐿𝐿 + 𝐹𝐹 − 1,𝐾𝐾). Also, let 𝑦̂𝑦𝑖𝑖𝑖𝑖∗ =

𝑦̂𝑦𝑖𝑖𝑖𝑖 if 𝐿𝐿 + 𝐹𝐹 − 1 < 𝐾𝐾 and 𝑦̂𝑦𝑖𝑖𝑖𝑖∗ = 𝑦̂𝑦𝑗𝑗𝑗𝑗 otherwise. Diagonal averaging of 𝑌𝑌 to produce the time series 
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 It is important to note that, since 𝐴̃𝐴 is reconstructed from the matrix 𝑌𝑌2, and 𝑌𝑌2 does not include 

the first data point, a time stamp delay is introduced [27]. Let 𝜏𝜏 be this time stamp delay, then in general 

𝑦̃𝑦𝑛𝑛+𝜏𝜏 ≈  𝑦𝑦𝑛𝑛. 

2.3 DMD modes and epidemiological interpretation 

In epidemiological study, it is important to identify and analyze the dynamic patterns. The dynamic 

modes provided by DMD can help in extracting important information regarding the epidemiological 

system such that the ability to capture specific dynamic pattern of disease transmission as well as the 

relative phase of ‘peaks’ of epidemic. The DMD mode Ψ𝑗𝑗 is a discrete approximation of the 

eigenfunction 𝜑𝜑𝑗𝑗(𝐱𝐱𝑛𝑛) (a complex-valued function) and it contains two important information pertaining 

to the dynamic pattern, i) the magnitude |Ψ𝑗𝑗| which is a vector of absolute values of the elements in Ψ𝑗𝑗, 

and ii) the phase ∠Ψ𝑗𝑗 i.e. angle formed by the elements in Ψ𝑗𝑗 in the complex plane. Trend forecasting 

of epidemic time series search for persistent dynamic patterns in the time series and these are 

characterized by persistent phase and magnitude.  
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 It is important to note that, since 𝐴̃𝐴 is reconstructed from the matrix 𝑌𝑌2, and 𝑌𝑌2 does not include 

the first data point, a time stamp delay is introduced [27]. Let 𝜏𝜏 be this time stamp delay, then in general 

𝑦̃𝑦𝑛𝑛+𝜏𝜏 ≈  𝑦𝑦𝑛𝑛. 

2.3 DMD modes and epidemiological interpretation 

In epidemiological study, it is important to identify and analyze the dynamic patterns. The dynamic 

modes provided by DMD can help in extracting important information regarding the epidemiological 

system such that the ability to capture specific dynamic pattern of disease transmission as well as the 

relative phase of ‘peaks’ of epidemic. The DMD mode Ψ𝑗𝑗 is a discrete approximation of the 

eigenfunction 𝜑𝜑𝑗𝑗(𝐱𝐱𝑛𝑛) (a complex-valued function) and it contains two important information pertaining 

to the dynamic pattern, i) the magnitude |Ψ𝑗𝑗| which is a vector of absolute values of the elements in Ψ𝑗𝑗, 

and ii) the phase ∠Ψ𝑗𝑗 i.e. angle formed by the elements in Ψ𝑗𝑗 in the complex plane. Trend forecasting 

of epidemic time series search for persistent dynamic patterns in the time series and these are 

characterized by persistent phase and magnitude.  
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 It is important to note that, since 𝐴̃𝐴 is reconstructed from the matrix 𝑌𝑌2, and 𝑌𝑌2 does not include 

the first data point, a time stamp delay is introduced [27]. Let 𝜏𝜏 be this time stamp delay, then in general 

𝑦̃𝑦𝑛𝑛+𝜏𝜏 ≈  𝑦𝑦𝑛𝑛. 

2.3 DMD modes and epidemiological interpretation 

In epidemiological study, it is important to identify and analyze the dynamic patterns. The dynamic 

modes provided by DMD can help in extracting important information regarding the epidemiological 

system such that the ability to capture specific dynamic pattern of disease transmission as well as the 

relative phase of ‘peaks’ of epidemic. The DMD mode Ψ𝑗𝑗 is a discrete approximation of the 

eigenfunction 𝜑𝜑𝑗𝑗(𝐱𝐱𝑛𝑛) (a complex-valued function) and it contains two important information pertaining 

to the dynamic pattern, i) the magnitude |Ψ𝑗𝑗| which is a vector of absolute values of the elements in Ψ𝑗𝑗, 

and ii) the phase ∠Ψ𝑗𝑗 i.e. angle formed by the elements in Ψ𝑗𝑗 in the complex plane. Trend forecasting 

of epidemic time series search for persistent dynamic patterns in the time series and these are 

characterized by persistent phase and magnitude.  
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 It is important to note that, since 𝐴̃𝐴 is reconstructed from the matrix 𝑌𝑌2, and 𝑌𝑌2 does not include 

the first data point, a time stamp delay is introduced [27]. Let 𝜏𝜏 be this time stamp delay, then in general 

𝑦̃𝑦𝑛𝑛+𝜏𝜏 ≈  𝑦𝑦𝑛𝑛. 

2.3 DMD modes and epidemiological interpretation 

In epidemiological study, it is important to identify and analyze the dynamic patterns. The dynamic 

modes provided by DMD can help in extracting important information regarding the epidemiological 

system such that the ability to capture specific dynamic pattern of disease transmission as well as the 

relative phase of ‘peaks’ of epidemic. The DMD mode Ψ𝑗𝑗 is a discrete approximation of the 

eigenfunction 𝜑𝜑𝑗𝑗(𝐱𝐱𝑛𝑛) (a complex-valued function) and it contains two important information pertaining 

to the dynamic pattern, i) the magnitude |Ψ𝑗𝑗| which is a vector of absolute values of the elements in Ψ𝑗𝑗, 

and ii) the phase ∠Ψ𝑗𝑗 i.e. angle formed by the elements in Ψ𝑗𝑗 in the complex plane. Trend forecasting 

of epidemic time series search for persistent dynamic patterns in the time series and these are 

characterized by persistent phase and magnitude.  
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 It is important to note that, since 𝐴̃𝐴 is reconstructed from the matrix 𝑌𝑌2, and 𝑌𝑌2 does not include 

the first data point, a time stamp delay is introduced [27]. Let 𝜏𝜏 be this time stamp delay, then in general 

𝑦̃𝑦𝑛𝑛+𝜏𝜏 ≈  𝑦𝑦𝑛𝑛. 

2.3 DMD modes and epidemiological interpretation 

In epidemiological study, it is important to identify and analyze the dynamic patterns. The dynamic 

modes provided by DMD can help in extracting important information regarding the epidemiological 

system such that the ability to capture specific dynamic pattern of disease transmission as well as the 

relative phase of ‘peaks’ of epidemic. The DMD mode Ψ𝑗𝑗 is a discrete approximation of the 

eigenfunction 𝜑𝜑𝑗𝑗(𝐱𝐱𝑛𝑛) (a complex-valued function) and it contains two important information pertaining 

to the dynamic pattern, i) the magnitude |Ψ𝑗𝑗| which is a vector of absolute values of the elements in Ψ𝑗𝑗, 

and ii) the phase ∠Ψ𝑗𝑗 i.e. angle formed by the elements in Ψ𝑗𝑗 in the complex plane. Trend forecasting 

of epidemic time series search for persistent dynamic patterns in the time series and these are 

characterized by persistent phase and magnitude.  
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2.2.2 Diagonal averaging, time series reconstruction and time stamp delay 

Similar to the Singular Spectrum Analysis (SSA), a diagonal averaging of matrix 𝑌𝑌 in Eqn. (16) is 
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𝑦̃𝑦1, 𝑦̃𝑦2, 𝑦̃𝑦3, … , 𝑦̃𝑦𝑙𝑙+𝐹𝐹 is given by [8] 
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 It is important to note that, since 𝐴̃𝐴 is reconstructed from the matrix 𝑌𝑌2, and 𝑌𝑌2 does not include 

the first data point, a time stamp delay is introduced [27]. Let 𝜏𝜏 be this time stamp delay, then in general 

𝑦̃𝑦𝑛𝑛+𝜏𝜏 ≈  𝑦𝑦𝑛𝑛. 

2.3 DMD modes and epidemiological interpretation 

In epidemiological study, it is important to identify and analyze the dynamic patterns. The dynamic 

modes provided by DMD can help in extracting important information regarding the epidemiological 

system such that the ability to capture specific dynamic pattern of disease transmission as well as the 

relative phase of ‘peaks’ of epidemic. The DMD mode Ψ𝑗𝑗 is a discrete approximation of the 

eigenfunction 𝜑𝜑𝑗𝑗(𝐱𝐱𝑛𝑛) (a complex-valued function) and it contains two important information pertaining 

to the dynamic pattern, i) the magnitude |Ψ𝑗𝑗| which is a vector of absolute values of the elements in Ψ𝑗𝑗, 

and ii) the phase ∠Ψ𝑗𝑗 i.e. angle formed by the elements in Ψ𝑗𝑗 in the complex plane. Trend forecasting 

of epidemic time series search for persistent dynamic patterns in the time series and these are 

characterized by persistent phase and magnitude.  
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the first data point, a time stamp delay is introduced [27]. Let 𝜏𝜏 be this time stamp delay, then in general 
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eigenfunction 𝜑𝜑𝑗𝑗(𝐱𝐱𝑛𝑛) (a complex-valued function) and it contains two important information pertaining 

to the dynamic pattern, i) the magnitude |Ψ𝑗𝑗| which is a vector of absolute values of the elements in Ψ𝑗𝑗, 

and ii) the phase ∠Ψ𝑗𝑗 i.e. angle formed by the elements in Ψ𝑗𝑗 in the complex plane. Trend forecasting 

of epidemic time series search for persistent dynamic patterns in the time series and these are 

characterized by persistent phase and magnitude.  
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 It is important to note that, since 𝐴̃𝐴 is reconstructed from the matrix 𝑌𝑌2, and 𝑌𝑌2 does not include 

the first data point, a time stamp delay is introduced [27]. Let 𝜏𝜏 be this time stamp delay, then in general 

𝑦̃𝑦𝑛𝑛+𝜏𝜏 ≈  𝑦𝑦𝑛𝑛. 

2.3 DMD modes and epidemiological interpretation 

In epidemiological study, it is important to identify and analyze the dynamic patterns. The dynamic 

modes provided by DMD can help in extracting important information regarding the epidemiological 

system such that the ability to capture specific dynamic pattern of disease transmission as well as the 

relative phase of ‘peaks’ of epidemic. The DMD mode Ψ𝑗𝑗 is a discrete approximation of the 

eigenfunction 𝜑𝜑𝑗𝑗(𝐱𝐱𝑛𝑛) (a complex-valued function) and it contains two important information pertaining 

to the dynamic pattern, i) the magnitude |Ψ𝑗𝑗| which is a vector of absolute values of the elements in Ψ𝑗𝑗, 

and ii) the phase ∠Ψ𝑗𝑗 i.e. angle formed by the elements in Ψ𝑗𝑗 in the complex plane. Trend forecasting 

of epidemic time series search for persistent dynamic patterns in the time series and these are 

characterized by persistent phase and magnitude.  
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 It is important to note that, since 𝐴̃𝐴 is reconstructed from the matrix 𝑌𝑌2, and 𝑌𝑌2 does not include 

the first data point, a time stamp delay is introduced [27]. Let 𝜏𝜏 be this time stamp delay, then in general 

𝑦̃𝑦𝑛𝑛+𝜏𝜏 ≈  𝑦𝑦𝑛𝑛. 

2.3 DMD modes and epidemiological interpretation 

In epidemiological study, it is important to identify and analyze the dynamic patterns. The dynamic 

modes provided by DMD can help in extracting important information regarding the epidemiological 

system such that the ability to capture specific dynamic pattern of disease transmission as well as the 

relative phase of ‘peaks’ of epidemic. The DMD mode Ψ𝑗𝑗 is a discrete approximation of the 

eigenfunction 𝜑𝜑𝑗𝑗(𝐱𝐱𝑛𝑛) (a complex-valued function) and it contains two important information pertaining 

to the dynamic pattern, i) the magnitude |Ψ𝑗𝑗| which is a vector of absolute values of the elements in Ψ𝑗𝑗, 

and ii) the phase ∠Ψ𝑗𝑗 i.e. angle formed by the elements in Ψ𝑗𝑗 in the complex plane. Trend forecasting 

of epidemic time series search for persistent dynamic patterns in the time series and these are 

characterized by persistent phase and magnitude.  
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relative phase of ‘peaks’ of epidemic. The DMD mode Ψ𝑗𝑗 is a discrete approximation of the 

eigenfunction 𝜑𝜑𝑗𝑗(𝐱𝐱𝑛𝑛) (a complex-valued function) and it contains two important information pertaining 

to the dynamic pattern, i) the magnitude |Ψ𝑗𝑗| which is a vector of absolute values of the elements in Ψ𝑗𝑗, 

and ii) the phase ∠Ψ𝑗𝑗 i.e. angle formed by the elements in Ψ𝑗𝑗 in the complex plane. Trend forecasting 

of epidemic time series search for persistent dynamic patterns in the time series and these are 

characterized by persistent phase and magnitude.  
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of epidemic time series search for persistent dynamic patterns in the time series and these are 

characterized by persistent phase and magnitude.  
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and ii) the phase ∠Ψ𝑗𝑗 i.e. angle formed by the elements in Ψ𝑗𝑗 in the complex plane. Trend forecasting 

of epidemic time series search for persistent dynamic patterns in the time series and these are 
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 It is important to note that, since 𝐴̃𝐴 is reconstructed from the matrix 𝑌𝑌2, and 𝑌𝑌2 does not include 

the first data point, a time stamp delay is introduced [27]. Let 𝜏𝜏 be this time stamp delay, then in general 

𝑦̃𝑦𝑛𝑛+𝜏𝜏 ≈  𝑦𝑦𝑛𝑛. 

2.3 DMD modes and epidemiological interpretation 

In epidemiological study, it is important to identify and analyze the dynamic patterns. The dynamic 

modes provided by DMD can help in extracting important information regarding the epidemiological 

system such that the ability to capture specific dynamic pattern of disease transmission as well as the 

relative phase of ‘peaks’ of epidemic. The DMD mode Ψ𝑗𝑗 is a discrete approximation of the 

eigenfunction 𝜑𝜑𝑗𝑗(𝐱𝐱𝑛𝑛) (a complex-valued function) and it contains two important information pertaining 

to the dynamic pattern, i) the magnitude |Ψ𝑗𝑗| which is a vector of absolute values of the elements in Ψ𝑗𝑗, 

and ii) the phase ∠Ψ𝑗𝑗 i.e. angle formed by the elements in Ψ𝑗𝑗 in the complex plane. Trend forecasting 

of epidemic time series search for persistent dynamic patterns in the time series and these are 

characterized by persistent phase and magnitude.  
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 It is important to note that, since 𝐴̃𝐴 is reconstructed from the matrix 𝑌𝑌2, and 𝑌𝑌2 does not include 

the first data point, a time stamp delay is introduced [27]. Let 𝜏𝜏 be this time stamp delay, then in general 

𝑦̃𝑦𝑛𝑛+𝜏𝜏 ≈  𝑦𝑦𝑛𝑛. 

2.3 DMD modes and epidemiological interpretation 
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relative phase of ‘peaks’ of epidemic. The DMD mode Ψ𝑗𝑗 is a discrete approximation of the 

eigenfunction 𝜑𝜑𝑗𝑗(𝐱𝐱𝑛𝑛) (a complex-valued function) and it contains two important information pertaining 

to the dynamic pattern, i) the magnitude |Ψ𝑗𝑗| which is a vector of absolute values of the elements in Ψ𝑗𝑗, 

and ii) the phase ∠Ψ𝑗𝑗 i.e. angle formed by the elements in Ψ𝑗𝑗 in the complex plane. Trend forecasting 

of epidemic time series search for persistent dynamic patterns in the time series and these are 

characterized by persistent phase and magnitude.  
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 It is important to note that, since 𝐴̃𝐴 is reconstructed from the matrix 𝑌𝑌2, and 𝑌𝑌2 does not include 

the first data point, a time stamp delay is introduced [27]. Let 𝜏𝜏 be this time stamp delay, then in general 

𝑦̃𝑦𝑛𝑛+𝜏𝜏 ≈  𝑦𝑦𝑛𝑛. 
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relative phase of ‘peaks’ of epidemic. The DMD mode Ψ𝑗𝑗 is a discrete approximation of the 

eigenfunction 𝜑𝜑𝑗𝑗(𝐱𝐱𝑛𝑛) (a complex-valued function) and it contains two important information pertaining 

to the dynamic pattern, i) the magnitude |Ψ𝑗𝑗| which is a vector of absolute values of the elements in Ψ𝑗𝑗, 

and ii) the phase ∠Ψ𝑗𝑗 i.e. angle formed by the elements in Ψ𝑗𝑗 in the complex plane. Trend forecasting 

of epidemic time series search for persistent dynamic patterns in the time series and these are 

characterized by persistent phase and magnitude.  
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 It is important to note that, since 𝐴̃𝐴 is reconstructed from the matrix 𝑌𝑌2, and 𝑌𝑌2 does not include 

the first data point, a time stamp delay is introduced [27]. Let 𝜏𝜏 be this time stamp delay, then in general 

𝑦̃𝑦𝑛𝑛+𝜏𝜏 ≈  𝑦𝑦𝑛𝑛. 

2.3 DMD modes and epidemiological interpretation 

In epidemiological study, it is important to identify and analyze the dynamic patterns. The dynamic 

modes provided by DMD can help in extracting important information regarding the epidemiological 

system such that the ability to capture specific dynamic pattern of disease transmission as well as the 

relative phase of ‘peaks’ of epidemic. The DMD mode Ψ𝑗𝑗 is a discrete approximation of the 

eigenfunction 𝜑𝜑𝑗𝑗(𝐱𝐱𝑛𝑛) (a complex-valued function) and it contains two important information pertaining 

to the dynamic pattern, i) the magnitude |Ψ𝑗𝑗| which is a vector of absolute values of the elements in Ψ𝑗𝑗, 

and ii) the phase ∠Ψ𝑗𝑗 i.e. angle formed by the elements in Ψ𝑗𝑗 in the complex plane. Trend forecasting 

of epidemic time series search for persistent dynamic patterns in the time series and these are 

characterized by persistent phase and magnitude.  
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 It is important to note that, since 𝐴̃𝐴 is reconstructed from the matrix 𝑌𝑌2, and 𝑌𝑌2 does not include 

the first data point, a time stamp delay is introduced [27]. Let 𝜏𝜏 be this time stamp delay, then in general 

𝑦̃𝑦𝑛𝑛+𝜏𝜏 ≈  𝑦𝑦𝑛𝑛. 

2.3 DMD modes and epidemiological interpretation 

In epidemiological study, it is important to identify and analyze the dynamic patterns. The dynamic 

modes provided by DMD can help in extracting important information regarding the epidemiological 

system such that the ability to capture specific dynamic pattern of disease transmission as well as the 

relative phase of ‘peaks’ of epidemic. The DMD mode Ψ𝑗𝑗 is a discrete approximation of the 

eigenfunction 𝜑𝜑𝑗𝑗(𝐱𝐱𝑛𝑛) (a complex-valued function) and it contains two important information pertaining 

to the dynamic pattern, i) the magnitude |Ψ𝑗𝑗| which is a vector of absolute values of the elements in Ψ𝑗𝑗, 

and ii) the phase ∠Ψ𝑗𝑗 i.e. angle formed by the elements in Ψ𝑗𝑗 in the complex plane. Trend forecasting 

of epidemic time series search for persistent dynamic patterns in the time series and these are 

characterized by persistent phase and magnitude.  
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3. RESULTS AND ANALYSIS
The experiments in this section are conducted 

on COVID-19 time series involving the number 
of  daily cases in Malaysia from 25 January 
2020 until 31 December 2021 and the dataset 
is taken from https://www.worldometers.info/
coronavirus/. The total length of  the time series 
is T = 858. The choice of  window size L should 
be between 2 and T/2 [27, 33] and to be able to 
extract seasonal component, it is necessary to 
use relatively large L, however, if  L is too large, 
high frequency components will tend to creep 
in. Since we are only interested in slow varying 
components, we choose to use L = 15 in all the 
experiments.

3.1 Trend Extraction and Resolving the Time 
Stamp Delay

In order to extract trend component, we 
analyse both the singular spectrum and the 
DMD frequencies (eigenvalues). The log of  the 
singular value spectrum is shown in Figure 1(a). 
Here we can see the 3rd and the 4th singular values 
having almost the same value. This indicates that 
the pair of  singular values belong to a periodic 
component. Singular values ≥ 5 mostly belong to 
minor high frequency components that captures 
local properties of  the time series. The observation 
strongly suggests that global trend can be found 
in only the first two principal singular values. 
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By analysing the DMD frequencies in 
Figure 1(b), we observe three components ( j = 1,2,3) 
that have almost zero imaginary components. 
Imaginary component of  the DMD eigenvalues 
captures oscillatory and high frequency part of  
the time series whereas the real part captures the 
growth/decay. The three components near the 
horizontal axis are therefore the components that 
represent trends. The indices of  the DMD modes 
associated with the trend component ( j = 1,2,3) 
are grouped together and then used to build a 
dynamical model for the time series which we 
later use to produce a reconstruction of  the time 
series as well as for forecasting. 

In Figure 2, the magnitudes 
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series. The eigenvalues associated with Ψ1, Ψ2 and Ψ3 are is 𝜆𝜆1 = 0.9939, 𝜆𝜆2 = 0.9224 and 𝜆𝜆3 =
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stationary manner. From these results, we learn that the phase of DMD modes can distinctively separate 

trend component from non-trend. Thus, the phase of DMD modes can be used to identify persistent 

patterns in the time series that capture the global trend of a time series. 

The DMD modes associated with the trend component are grouped and then used to reconstruct  

the original time series in Figure 2(a). A comparison of the reconstructed time series and the original 

time series is shown in Figure 4. The presence of the time stamp delay can be observed in Figure 4(a) 
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Figure 4. (a) Reconstruction using time stamp delay, 𝜏𝜏 = 0 (b) Reconstruction using time stamp delay,  
𝜏𝜏 = 15 = 𝐿𝐿. 
 
where 𝑦𝑦𝑖𝑖 refers to the 𝑖𝑖th true data and 𝑦̃𝑦𝑖𝑖+𝜏𝜏 is the estimate of 𝑦𝑦𝑖𝑖. With a choice of 𝜏𝜏 = 𝐿𝐿 = 15 we are 

able to reduce the MSE from 0.0150 to 0.0116(see Figure 2(b)). 

3.2 Time series reconstruction and forecasting using DMD 

In this section, we compare the performance of DMD and SSA in reconstructing and forecasting the 

global trend of the Malaysia COVID-19 time series. The time series is divided into two parts; the first 

part contains data to be used for reconstruction and the second part is treated as future data. Three 

forecasting points are chosen, namely on 5 October 2020 (255𝑡𝑡ℎ), 22 April 2021 (454𝑡𝑡ℎ) and 22 

February 2022 (760𝑡𝑡ℎ).  

Based on our analysis in the previous section, we outline the strategies for extracting trend 

components to be used in the construction of the DMD forecasting model: 

Reconstruction stage: 

1. Identify the portion of the time series to be used for the reconstruction. 

2.  With a choice of 𝐿𝐿 = 15, identify the indices of DMD modes 𝑖𝑖𝑖𝑖(𝜔𝜔𝑗𝑗) ≈ 0. 

3. Check the phases of the identified DMD components; ensure that they are stationary. 

4. Group the DMD trend components and compute Ψ𝐺𝐺1.  

5. Construct  𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = Ψ𝐺𝐺1𝑇𝑇𝐺𝐺1𝑟𝑟 . 

6. Use diagonal averaging to reconstruct the time series from 𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. 
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3.2 Time Series Reconstruction and Forecasting 
using DMD

In this section, we compare the performance 
of  DMD and SSA in reconstructing and forecasting 
the global trend of  the Malaysia COVID-19 
time series. The time series is divided into two 
parts; the first part contains data to be used for 
reconstruction and the second part is treated as 
future data. Three forecasting points are chosen, 
namely on 5 October 2020 (255th), 22 April 2021 
(454th) and 22 February 2022 (760th).

Based on our analysis in the previous section, 
we outline the strategies for extracting trend 
components to be used in the construction of  
the DMD forecasting model: 

Reconstruction stage:
1. Identify the portion of  the time series to be 
used for the reconstruction.

2. With a choice of  L = 15 identify the indices 
of  DMD modes 
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Figure 3. (a) Phase of Ψ1  (b) Phase of Ψ2 (c) Phase of Ψ3  (d) Phase of Ψ4. 

The phases ∠Ψ𝑗𝑗, 𝑗𝑗 = 1,2,3,4 are presented in Figure 3. There are two persistent phases clearly 

depicted in Figures 3(a)-(b) associated with the trend components. The phase of the non-trend 

component Ψ4 is shown in Figure 3(d) for comparison where it is seen that the phase behaves in a non-

stationary manner. From these results, we learn that the phase of DMD modes can distinctively separate 

trend component from non-trend. Thus, the phase of DMD modes can be used to identify persistent 

patterns in the time series that capture the global trend of a time series. 

The DMD modes associated with the trend component are grouped and then used to reconstruct  

the original time series in Figure 2(a). A comparison of the reconstructed time series and the original 

time series is shown in Figure 4. The presence of the time stamp delay can be observed in Figure 4(a) 
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3. Adjust the time index of  the constructed time 
series 

7. Compare the reconstructed time series with the original series. Identify the value of the time 

stamp delay 𝜏𝜏 empirically by choosing a value that minimizes (𝑀𝑀𝑀𝑀𝑀𝑀)𝑟𝑟 in Eqn. (20). 

Forecasting stage: 

1. Construct  𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑓𝑓 = Ψ𝐺𝐺1𝑇𝑇𝐺𝐺1

𝑓𝑓 . 

2. Use diagonal averaging to construct the original time series with  𝐹𝐹-steps ahead forecasts from 

𝑌̂𝑌 = [𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑌̂𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑓𝑓 ].  

3. Adjust the time index of the constructed time series 𝑛𝑛 → 𝑛𝑛 + 𝜏𝜏. 

For SSA reconstruction and forecast, components that correspond to the first two principal singular 

values are used. To evaluate the performance of both methods, the reconstruction MSE and forecast 

MSE are computed. For DMD the reconstruction MSE is calculated according to Eqn. (20) whereas for 

SSA, the reconstruction MSE is calculated according to the formula 

 
(𝑀𝑀𝑀𝑀𝑀𝑀)𝑟𝑟
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where 𝑦̃𝑦𝑖𝑖
(𝑆𝑆𝑆𝑆𝑆𝑆) is the reconstructed time series from SSA components. The forecast MSE are calculated 

as follows: 
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where 𝑦̃𝑦𝑖𝑖+𝜏𝜏
𝑓𝑓  and 𝑦̃𝑦𝑖𝑖

𝑓𝑓(𝑆𝑆𝑆𝑆𝑆𝑆) are the forecasts from DMD and SSA respectively. 

At each forecasting points, a 30-days forecast (𝐹𝐹 = 30) is generated using both DMD and SSA 

and the results are shown in Figure 5. At the first forecasting point (Figure 5(a) (DMD) and Figure 5(b) 

(SSA)), we can see both methods are able to detect the increasing trend in the time series. The forecast 

generated by SSA follows closely the direction of maximum variance of data thus producing a good 

MSE for the reconstruction. However, the sudden change in the direction of the time series is not 

detected in its forecast. The DMD forecast appears to be more modest and follows the long-term global 

trend. At the second forecasting point (Figure 5(c) (DMD) and Figure 5(d) (SSA)), we observe a similar 

For SSA reconstruction and forecast, components 
that correspond to the first two principal singular 
values are used. To evaluate the performance of  
both methods, the reconstruction MSE and forecast 
MSE are computed. For DMD the reconstruction 
MSE is calculated according to Eqn. (21) whereas 
for SSA, the reconstruction MSE is calculated 
according to the formula
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Figure 5. (a) DMD Forecast on 5 October 2020 (255𝑡𝑡ℎ) (b) SSA Forecast on 5 October 2020 
(255𝑡𝑡ℎ) (c) DMD Forecast on 22 April 2021 (454𝑡𝑡ℎ)  (d) SSA Forecast on 22 April 2021 (454𝑡𝑡ℎ) 
(e) DMD Forecast on 22 February 2022 (760𝑡𝑡ℎ) (f) SSA Forecast on 22 February 2022 (760𝑡𝑡ℎ). 
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3 0.0337 0.0343 0.9826 0.0025 0.0229 0.1075

4 0.0309 0.0365 0.8477 0.0039 0.0188 0.2062

5 0.0284 0.0481 0.5906 0.0052 0.0184 0.2815

6 0.0279 0.0649 0.4298 0.0060 0.0183 0.3288

 7 0.0268 0.0654 0.4100 0.0064 0.0212 0.3033

8 0.0257 0.0652 0.3949 0.0065 0.0261 0.2495

9 0.0213 0.0494 0.4314 0.0048 0.0225 0.2126

10 0.0166 0.0518 0.3202 0.0056 0.1528 0.0368
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the DMD and SSA for different window size, the 
values of  reconstruction MSE and forecast MSE 
are computed for window sizes 3 ≤ L ≤ 15 and 
presented in Table 2. From Table 2, it is observed 
that the SSA method consistently records lower 
reconstruction MSE compared to DMD but the 
forecast MSE for SSA is consistently higher than that 
of  DMD. The plot of  the ratios 

behaviour with SSA, where the forecast tends to follow the direction of maximum variance but in 

general a bit slow to detect sudden change in the global trend of the time series. The SSA forecasts at 

this point are showing a slowdown in transmission and nearing a peak. On the other hand, DMD forecast 

do not generally follow the local trend but instead agrees better with global trend that observes an 

increase in transmission. An interesting observation is found at the third forecasting point (Figure 5(e) 

(DMD) and Figure 5(f) (SSA)). The 30-day forecasts are produced near a peak of the time series. Both 

methods managed to capture the peak of the pandemic, however DMD manage to detect the peak with 

a much better resolution (in magnitude as well in time) compared to SSA. 

The reconstruction MSE and forecast MSE for the results in Figure 5 are compared in Table 1. It 

is observed that the SSA method consistently records lower reconstruction MSE compared to DMD.  

However, the forecast MSE for DMD appears to be more controlled and consistent compared to SSA.  

To investigate the generalization capability of the DMD and SSA for different window size, the 

values of reconstruction MSE and forecast MSE are computed for window sizes 3 ≤ 𝐿𝐿 ≥ 15 and 

presented  in Table 2. From Table 2, it is observed that the SSA method consistently records lower 

reconstruction MSE compared to DMD but the forecast MSE for SSA is consistently higher than that 

of DMD. The plot of the ratios (𝑴𝑴𝑴𝑴𝑴𝑴)𝒓𝒓 (𝑴𝑴𝑴𝑴𝑴𝑴)𝒇𝒇⁄  for DMD, and (𝑴𝑴𝑴𝑴𝑴𝑴)𝒓𝒓𝑺𝑺𝑺𝑺𝑺𝑺 (𝑴𝑴𝑴𝑴𝑴𝑴)𝒇𝒇𝑺𝑺𝑺𝑺𝑺𝑺⁄  for SSA as 

shown in Figure 6 provides a clearer picture of the generalization ability of SSA and DMD. For all 

window size 3 ≤ 𝐿𝐿 ≥ 15, DMD shows better generalization ability compared to SSA where the 

reconstruction MSE is more comparable to the forecast MSE. This observation is consistent with the 

observation in Figure 5 where DMD has more tendency to observe global trend of the time series 

compared to SSA.  

 

 
for DMD, and 

behaviour with SSA, where the forecast tends to follow the direction of maximum variance but in 

general a bit slow to detect sudden change in the global trend of the time series. The SSA forecasts at 

this point are showing a slowdown in transmission and nearing a peak. On the other hand, DMD forecast 

do not generally follow the local trend but instead agrees better with global trend that observes an 

increase in transmission. An interesting observation is found at the third forecasting point (Figure 5(e) 

(DMD) and Figure 5(f) (SSA)). The 30-day forecasts are produced near a peak of the time series. Both 

methods managed to capture the peak of the pandemic, however DMD manage to detect the peak with 

a much better resolution (in magnitude as well in time) compared to SSA. 

The reconstruction MSE and forecast MSE for the results in Figure 5 are compared in Table 1. It 

is observed that the SSA method consistently records lower reconstruction MSE compared to DMD.  

However, the forecast MSE for DMD appears to be more controlled and consistent compared to SSA.  

To investigate the generalization capability of the DMD and SSA for different window size, the 

values of reconstruction MSE and forecast MSE are computed for window sizes 3 ≤ 𝐿𝐿 ≥ 15 and 

presented  in Table 2. From Table 2, it is observed that the SSA method consistently records lower 

reconstruction MSE compared to DMD but the forecast MSE for SSA is consistently higher than that 

of DMD. The plot of the ratios (𝑴𝑴𝑴𝑴𝑴𝑴)𝒓𝒓 (𝑴𝑴𝑴𝑴𝑴𝑴)𝒇𝒇⁄  for DMD, and (𝑴𝑴𝑴𝑴𝑴𝑴)𝒓𝒓𝑺𝑺𝑺𝑺𝑺𝑺 (𝑴𝑴𝑴𝑴𝑴𝑴)𝒇𝒇𝑺𝑺𝑺𝑺𝑺𝑺⁄  for SSA as 

shown in Figure 6 provides a clearer picture of the generalization ability of SSA and DMD. For all 

window size 3 ≤ 𝐿𝐿 ≥ 15, DMD shows better generalization ability compared to SSA where the 

reconstruction MSE is more comparable to the forecast MSE. This observation is consistent with the 

observation in Figure 5 where DMD has more tendency to observe global trend of the time series 

compared to SSA.  

 

 for SSA as 

shown in Figure 6 provides a clearer picture of  
the generalization ability of  SSA and DMD. For 
all window size 3 ≤ L ≤ 15, DMD shows better 
generalization ability compared to SSA where 
the reconstruction MSE is more comparable to 
the forecast MSE. This observation is consistent 
with the observation in Figure 3 where DMD 
has more tendency to observe global trend of  
the time series compared to SSA. 
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4. DISCUSSION AND CONCLUSIONS 
In this study, we investigate the applicability 

of  DMD in capturing the global trend in the 
COVID-19 time series of  Malaysia. We outlined 
the strategies to extract trend component in the 
time series and to empirically resolving the time 
stamp delay prior to constructing the forecasting 
model. Trend components correspond to slow 
varying DMD modes and these are identified as 
components whose frequencies have almost zero 
imaginary part. It is also found that persistent 
patterns in the time series are correspond well 
with the DMD modes with persistent stationary 
phases.

The observations in Figure 5 highlight the 
following fundamental differences in the capabilities 
of  DMD and SSA:

• Because SSA forecasting model is con-
structed directly from principal components 
from the SVD, we found that SSA reconstructs 
the time series along the direction of  maximum 
variance, and this observation is supported by the 
consistently low reconstruction MSE. However 
this attribute limits the capability of  SSA to detect 
sudden changes in the direction of  the time series 
which can result in poor generalization capability.

• When extracting trends from DMD compo-
nents, high frequency components are strategically 
ignored and only slow varying components are 
used for reconstruction. Information on the phase 
of  DMD modes allows better identification of  
persistent patterns that govern future behaviour 
of  the time series Therefore, with DMD, the 
emphasize is to capture the global trend, thus its 
generalization capability is expected to be better 
than SSA.

• the ability of  DMD to isolate persistent 
pattern allows it to capture temporal events 
much better compared to SSA. This attribute is 
observed in Figure 5(c) where DMD managed 
to detect the peak of  the pandemic with a much 
better resolution (in magnitude as well in time) 
compared to SSA.

The method and analysis presented in this 
paper underline the intrinsic properties of  DMD 
that can help to uncover meaningful insights in 
data-driven analysis of  dynamical time series 
such as epidemic. The results are confined to the 
COVID-19 time series of  Malaysia but has the 
potential to be explored further for different types 
of  dynamical time series such as environmental 
time series, biomedical time series, ecological time 
series and others.

 

Figure 6. Ratio of reconstruction MSE to the forecast MSE for DMD and SSA model respectively. 
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