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ABSTRACT

		 An activated carbon was prepared from an agricultural waste mangosteen shell by chemical 
modification (BTMC) and removal efficiency was tested using aqueous solution of  Hg (II). The 
functional groups and surface morphology of  BTMC were analyzed using FT-IR and SEM studies. 
Commercial activated carbon (CAC) was used to compare the efficiency of  BTMC in Hg (II) removal. 
Batch mode studies were conducted to evaluate the parameters like contact time, pH, carbon dose 
on the removal efficiency of  Hg (II) from aqueous solution. Removal of  mercury occurs at optimal 
contact time of  120 min at pH 5 and carbon dosage of  120 mg for BTMC. Adsorption isotherm 
was studied using Freundlich, Langmuir, and Temkin isotherm models. Equilibrium data fitted well 
with Langmuir isotherm. The maximum adsorption capacity of  Hg (II) was found to be 49.75 mg g-1 

for BTMC. The pseudo second-order kinetic model fits well with the experimental data. Wastewater 
analysis was also performed to evaluate the practical applicability of  the carbon.
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1. INTRODUCTION
Modern agricultural practices and the rapid 

growth of  industries act as a major source of  
heavy metals in water bodies. Mercury is a toxic 
bioaccumulative and volatile poison. Mercury (II) 
finds its way into aquatic systems through wastes 
from paper and pulp industry, chloro-alkali plants, 
paint, pharmaceutical, rubber processing, smelting, 
burning of  fossil fuels, oil refining, mining and 
battery manufacturing processes. As per WHO 
report the maximum permissible limit of  mercury 
in drinking water is 0.001 mgL-1 [1,2].The US 
Environmental Protection Agency sets a Hg limit 

of  10 µgL-1 for wastewater discharge and 2 µgL-1 
for drinking water [3]. Excessive Hg exposure 
may result in the development of  symptoms 
such as tremors, loss of  sensation in extremities, 
vision and hearing loss, or developmental and 
behavioural abnormalities [4]. Many conventional 
methods like chemical, oxidation and reduction, 
precipitation, ion exchange, coagulation, and 
adsorption are used for mercury removal. Due to 
low cost and efficient removal adsorption process 
is used by researchers for the removal of  mercury 
from water. Agricultural wastes like rice husk[5] 
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terminalia catappa [6] palm shell [7] pea nutshell 
[8] wall nutshell [9] were used in the removal of  
mercury from water.

Mangosteen (Garcinia Mangostana Linn.) of  
Hypericaceae family is most commonly found in 
Asian countries Mangosteen shell which is available 
in plenty is used in the removal of  heavy metal 
from water [10, 11].The phenolic acid present in 
the pericarp of  mangosteen shell has the ability to 
bind heavy metals from the aqueous solution [12]. 
In the present investigation, chemical modification 
of  mangosteen shell was done using sulphuric acid 
and tested for the removal efficiency of  mercury 
from aqueous solution.

2. MATERIALS AND METHODS
2.1 Preparation of  Carbon Adsorbent

Mangosteen shell collected from Thenkasi, 
India was washed with distilled water, dried at 110ºC 
powdered and sieved to 20-50 ASTM mesh size. 
The dried material was treated with con H2SO4 
(1:1) weight ratio and kept in a hot air oven at 
150 ± 5ºC for 24 h. The carbonized material was 
washed with distilled water to remove the free acid 
and soaked in 1% sodium bicarbonate until the 
effervescence ceases and further soaked in the 
same solution for 24 h to remove the residual acid. 
The activated carbon was washed with distilled 
water, dried at 105 ºC and again sieved to 20-50 
ASTM mesh size and labelled as Bicarbonate 
Treated Mangosteen Shell carbon (BTMC). The 
Commercial Activated Carbon (CAC) was also 
broken and sieved to 20-50 ASTM mesh size.

 2.2 Preparation of  Hg (II) Solution
A stock solution of  Hg (II) (1000 mg L-1) was 

prepared by dissolving 1.354 g of  Hg2Cl2 solution 
in 1000 mL of  distilled water. The solution was 
diluted as required to prepare standard solutions 
containing 10-50 mg L-1 of  Hg (II).100 mL of  
Hg (II) solution of  the desired concentration is 
adjusted to the desired pH using dilute hydrochloric 
acid solution or dilute sodium hydroxide solution.

2.3 Batch Adsorption Experiments
Adsorption studies were carried out by varying 

contact time (30-300 min), solution pH (1-10) and 
adsorbent dosage (40-320 mg).For each study a 
required quantity of  adsorbent dose was added to 
100 mL of  10 mg L-1 of  Hg (II) solutions taken 
in polythene containers agitated in a mechanical 
shaker. The carbon was separated by filtration and 
the filtrate was analyzed by spectrophotometer 
using Rhodamine 6G reagent for Hg (II) content 
at 575 nm [13]. Adsorption isotherm studies were 
carried out with from aqueous solution. Commercial 
activated carbon obtained from Nice chemicals 
Pvt Ltd, India was used for comparative study.

3. RESULTS AND DISCUSSION
The characteristics of  both the carbon 

were studied as per the standard procedure and 
observations listed in Table 1.

3.1 Fourier Transforms Infrared Spectroscopy 
Analysis

From the FTIR spectrum data of  BTMC 
before and after Hg (II) adsorption it is evident 
that some of  the peaks shift or disappear after 
adsorption indicating the incorporation of  heavy 
metal ion Hg (II) within the adsorbent through 
the interaction of  the active functional group 
after adsorption (Table 2)

3.2 SEM Analysis
The SEM image of  the adsorbent BTMC 

before and after adsorption was shown in 
Figure 1(a, b).This microscope image shows the 
presence of  isolated pores of  varying dimension 
before and after adsorption. The cave- like opening 
before adsorption in BTMC is clearly seen and 
filled with Hg (II) ion after adsorption. 

3.3 Effect of  Contact Time
Equilibrium time is an important parameter 

to be analysed to study the adsorption process. 
Figure 2 shows the effect of  contact time on the 
adsorption of  Hg (II) on BTMC and CAC. The 
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Table 2. FTIR spectral data of  different functional groups before and after adsorption of  Hg (II) 
on BTMC.                              

Frequencies(cm-1)
 Corresponding functional groups

    Before Adsorption After Adsorption
3425
2981
2372
1427
1222 

 3402
Disappear

 2364
 1435

Disappear

   -OH stretching vibration
     C-H stretching
     C≡C stretching
     Sulphonic acid 

   -CO stretching vibration of  ether

results show that the removal of  mercury ion 
increases with time and attains equilibrium in 
120 min for BTMC and 210 min for CAC. Due 
to the presence of  more uncovered area in the 
adsorbent initially, the adsorption is fast. As time 
increases the surface area are covered and the 
metal ion slowly diffuses into the intra-particular 
pore of  the adsorbent. 

At low pH value (pH 2), the number of  
negatively charged surface sites decreased and 
the number of  positively charged sites increased, 
which did not favor the sorption of  positively 
charged metal ions (Hg2+ and Hg(OH)+) due 
to electrostatic repulsion. Additionally, lower 
adsorption of  Hg (II) at acidic pH is due to the 
presence of  excess H+ ions competing with metal 
ions for the sorption sites. The increase in adsorp-
tion at pH 5 may be due to the less competition 
from protons to reaction sites, to an increase in 
concentration of  Hg(OH)+ species At higher pH 

values the decrease in biosorption may be due to 
the formation of  soluble hydroxilated compound 
(Hg(OH)2).
 
3.4 Effect of  pH

The removal of  metal ion from aqueous 
solution by adsorption is highly dependent on the 
pH of  the solution. Figure.3 shows the effect of  
pH on the removal of  Hg (II) by BTMC and CAC. 
 It was observed that maximum removal of  87 % 
was observed for BTMC and 73 % for CAC at 
pH 5. Similar observations were reported for 
adsorption of  moss, Ulva lactuca [14,15 ]

3.5 Effect of  Carbon Dose
The effect of  carbon dosage on the percentage 

removal of  Hg (II) is shown in Figure 4. It was 
observed that initially, the percentage removal 
increases sharply with the increase in adsorbent dose 
but after 120 mg dose of  BTMC and 210 mg dose 

Table 1. Characteristics of  the carbon.

Parameter BTMC CAC
Bulk Density 0.54 0.71

Moisture (%) 3.14 2.28

Matter soluble in water  (% ) 5.12 1.58

Matter Soluble in 0.25M HCl (%) 16.31 2.04

pH 6.29 7.64

Decolorizing power (mg g-1) 12 5.1

Ion exchange capacity(m equiv g-1) 0.298 Nil

Surface area(m2 g-1) 209 150

Porosity (%) 50.11 36.41
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Figure 1. (a) SEM image of  BTMC before adsorption (b) SEM image of  BTMC after adsorption.  

Figure 2. Effect of  contact time on the removal of  Hg (II) by BTMC and CAC.

Figure 3. Effect of  pH on the removal of  Hg (II) by BTMC and CAC ( Dose =100 mg/100 mL).

of  CAC the percentage removal value is constant 
due to the reduction in a concentration gradient. 
The maximum removal efficiency of  Hg (II) for 
BTMC and CAC are 99 % and 90% respectively. 

The increase in removal efficiency of  Hg (II) ion 
may be due to the increase in adsorbent mass or 
availability of  a large number of  exchangeable 
sites for adsorption.
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Figure 4. Effect of  carbon dosage on the removal of  Hg (II) by BTMC and CAC at (pH =5).

3.6 Effect of  Temperature
The adsorption of  Hg (II) was investigated 

at three different temperatures 27ºC, 37ºC, 47ºC 
for the initial Hg (II) ion concentration of  10 mg 
L-1 at constant adsorbent dosage of  100 mgL-1 at 
optimum pH of  5.The % removal for is found 
to be 90%, 87%, 84% for BTMC and 60%, 52%, 
47% for CAC. Maximum removal of  Hg (II) was 
obtained at 27ºC. The percentage removal of  Hg 
(II) ion decreases with increase in temperature .This 
may be due to the decrease in surface activity of  
Hg (II). Similar observation were noted by Sudha 
et al and Huang et al [ 16,17] 

3.7 Adsorption Isotherm
The adsorption isotherm was used to 

understand the equilibrium between the amount 
of  adsorbate that accumulates on the adsorbent 
and the concentration of  the dissolved adsorbate. 
The Freundlich adsorption isotherm for the 
heterogeneous system is expressed by [18]

4 
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(mg L-1) and x/m is the amount adsorbed per unit 
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Table 3. Isotherm parameters for Hg (II) removal from aqueous solution.

  Isotherm model Parameter BTMC CAC

Freundlich K (mg g-1) 127.19 32.9

n (L-1mg) 1.98 1.33

R2 0.9905 0.9373

Q0 (mg g-1) 49.75 44.44

Langmuir b (L-1mg)    0.3284 0.0851

  R2 0.9937 0.9951

  RL 0.06-0.23 0.19-0.54

Temkin A 10.54 9.86

  B 13.35 1.83

R2 0.9860 0.9978

where qe is the amount of  solute adsorbed at an 
equilibrium concentration of  a metal ion in mg 
g.-1 Ce is the equilibrium of  the solute in mg g-1 
A is the Temkin constant related to adsorption 
capacity in mg g-1 and B is the Temkin constant 
related to the intensity of  adsorption in L mg-1. The 
values of  A and B are tabulated in Table 3 [20]. 

3.8 Adsorption Kinetics
To evaluate the kinetics on adsorption of  Hg 

(II) on the BTMC and CAC pseudo-first order 
and pseudo-second order models were tested 
with 3,5,7and 10 ppm of  Hg(II). Pseudo first 
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Figure 6. Pseudo -first- order kinetic fit of  Hg (II) on BTMC (a) and CAC (b).  
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when P (%) value is less than 5, the fit is considered 
to be excellent [23].

All kinetic parameters, correlation coefficients 
and P (%) are listed in Table 4. The correlation 
coefficient (R2) for the pseudo-second-order model 
is much closer to unity. The calculated qe value 
is found to be much closer to the experimental 
qe value. The percent relative deviation (P %) 
is also found to be less than 5% in the case of  
pseudo-second-order kinetics. These results 
confirm that the adsorption kinetics of  Hg (II) 
ions onto the BTMC and CAC is mainly governed 
by the pseudo-second-order equation. Similar 

kinetic results were observed in the sorption of  
Hg(II) by other adsorbents like corn starch[24]
and ricestraw[25].

3.9 Removal of  Hg (II) from Synthetic Waste 
Water

The applicability of  sorbent was tested by 
performing batch mode studies. The effect of  
adsorbent dosage on the removal of  Hg (II) from 
synthetic wastewater was analyzed. Figure 8 shows 
the effect of  adsorbent dosage on removal of  
Hg (II) from wastewater. A minimum dosage of  
200 mg BTMC and 310 mg of  CAC is essential 

Table  4. Pseudo- First -Order and Pseudo -Second -Order constants for Hg (II) adsorption on BTMC       
and CAC at different initial concentration.

Carbon Con qexp

(mg-1g)
qcal

(mg-1g)
K1

(g mg-1 
min-1)

P% R2 qcal

(mg-1g)
K2

(g mg-1   

min-1) 

P% R2

Pseudo first order Pseudo second order
BTMC 10

7
5
3

9.35
6.50
4.75
2.80

2.13
1.45
1.14
2.00

0.0087
0.0057
0.0037
0.0076

77.21
77.69

76
28.57

0.875
0.942
0.999
0.961

9.61
6.62
4.93
2.87

0.018
0.007
0.020
0.067

2.67
1.85
3.62
2.28

    1.000
 0.999
0.998
1.000

CAC 10
7
5
3

8.00
5.50
4.00
2.75

3.27
1.47
1.09
1.4

0.0032
0.0028
0.0063
0.0085

59.13
73.27
72.75
49.09

0.922
0.988
0.941
0.922

8.38
5.60
4.15
2.83

0.005
0.023
0.024
0.055

4.48
1.83
3.68
2.84

0.994
0.999 
1.000
1.000

(a) (b)

Figure 7. Pseudo -second -order kinetic fit of  Hg(II) on BTMC (a) and on CAC (b).
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Figure 8. Effects of  the adsorbent dose on the removal Hg (II) ions from synthetic wastewater.

for the maximum removal of  93% and 82% of  
Hg (II) ions from synthetic water. Hence BTMC 
is found to be efficient in remove mercury from 
wastewater due to its moderate ion exchange 
property.

4. CONCLUSIONS
Chemically modified Mangosteen shell using 

sulphuric acid (BTMC) can serve as an economical 
and efficient adsorbent for the removal of  Hg 
(II) from aqueous solution. Removal of  mercury 
occurs at optimal contact time of  120 min at 
pH 5 and carbon dosage of  120 mg for BTMC. 
The equilibrium data fitted well with Langmuir 
adsorption studies for BTMC and CAC. The 
adsorption capacity (Q0) of  BTMC was found to be 
49.75mgg-1 and 44.44mgg-1 for CAC. The pseudo 
second -order kinetics fits well for BTMC and 
CAC. The batch study with synthetic wastewater 
confirms the efficient use of  adsorbent in the 
removal of  Hg (II) ions from aqueous solution. 
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