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ABSTRACT

The purpose of this study was to demonstrate that the Application of Frequency
Domain Experiments (AFDE) method is effective in screening for discrete variable factors
within production systems, plus requires fewer computer simulations than conventional
factorial design. To help clarify this, an assembly line production system was designed
in order to have factor screening experiments carried out using the AFDE method. The
study assembly line produces one type of product and there were ten workstations
assigned to be the study’s discrete variable factors. Each factor had one to five machines
for the workers to control. In the experiment, there were three main study aims in
terms of the assembly line production process, these being to carry out: 1) A Major
Factor Study, 2) Impact Ranking Major Factors Study, and 3) Sensitivity Impact of the
Factors Study.

The study results show that AFDE had the ability to detect bottleneck
workstations in the production system for all the types of study undertaken. When
assigning the system to have one, two or three bottleneck stations in a respective order,
AFDE was able to detect these bottleneck stations and order the importance of the
stations with 100% accuracy. In addition, AFDE requires fewer computer runs than
conventional factorial design.

Keywords: factor screening, frequency domain, simulation.

1. INTRODUCTION

Computer simulations are widely used,
and have recently become one of the key
tools used in operational research. Since
a computer simulation allows for the
adjustment of factor or parameter values
without the need to run any real operation,
the simulation outcomes can be used
for decision-making prior to running real
systems [1]. In addition, Ravindran et al. [2]
define ‘Computer Simulation’ as a numerical

technique used for conducting experiments
on computers which involves logical and
mathematical relationships that interact
to describe the behavior and structure of
a complex real world system over extended
periods of time.

However, for a very complicated job
system such as a job shop, a computer
simulation can take a long time to obtain
the required results. In a complex job system,
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a computer simulation will involve a number
of factors, and as a result spend an extended
period of time finding a solution. Although
there are a number of factors within
a complex job system, only a few will
influence the response, as stated in Pareto’s
80/20 rule. We believe that only 20% to 30%
of the input factors influence 70% to 90%
of a production system’s response; therefore,
establishing those influencing factors
and reducing the size of the problem should
help reduce the time spent analyzing or
looking for a suitable solution. Moreover,
implementation of the model becomes more
convenient, as the complexity of the system
is reduced and it is easier to understand.
This method is called ‘Factor Screening’ [3];
for example, if a system involves three factors
which are integer numbers from 1 to 10, the
solution space in this case will cover 10°
or 1,000 possible answers. However, if there
are only two factors, the solution space will
cover only 10% or 100 possible answers.

In general, the conventional factorial
design technique is used for factor screening,
being considered the most effective method
to use, and is conducted by integrating all
possible factor levels. Vinod and Sridharan [4]
studied factors influencing the scheduling
rules in a job shop using the Factorial
Design Technique, running a total of 2,160
simulations. In their study there were four
studied factors: the average time of an
incoming job on two levels, the due date on
three levels, time spent installing a machine on
three levels, and scheduling rules on twelve
levels. In total they conducted ten replications.

The Factorial Design Technique has
been extensively used in research, including
as a foundation for other types of design
which are important in operational process.
The most important cases involving factorial
design are those involving the number of
k-factors, known as 2% Factorial Design cases,
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in which only two factor levels: ‘high’ and
‘low’, are designated. However, using this
method to search for major factors within
simulations requires many simulation runs;
for example, if there are twenty factors one
needs to run 2% or 1,048,576 simulations.
Thus, in this case if each simulation were to
be replicated 30 times, the simulations
would have to be run a total of 31,457,280
times. The number of simulations increases
according to the increasing exponential
distribution, which is an obvious disadvantage
of using this method. Some scholars have
attempted to reduce the number of
simulation runs required; for example Tsao
and Liu [5], who studied a suitable number
of simulation runs for the 2% Factorial
Design and found that some major factors
may be excluded if the number of runs is
reduced.

On the other hand, Frequency Domain
Methodology (FDM), as introduced by
Schruben and Cogliano [6, 7], can screen
many factors over only a few computer
runs. Jacobson and Schruben [8] also extended
the method to include gradient direction
estimation, in which a frequency domain
method for factor screening is used as
the simulation model, and is run with input
factors that are varied during a production
run according to sinusoidal oscillations.
Different frequencies during a run are
assigned for each factor, and as the
simulation response is sensitive to changes
in a particular factor, then the oscillation
of that factor induces oscillations in the
response. Frequency Domain Experiments
(FDE) permit one to identify an appropriate
polynomial model for a simulation output.
Frequency domain simulation experiments
typically require two to three runs to be
carried out for factor screening,

Morrice [9] presented a comparison of
FDM and the two-level fractional factorial
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method, the results showing that where the
number of factors is large enough, FDM has
the advantage in terms of the power of the
test. This methodology has been used
extensively in the FDM literature; for
example, in Morrice and Schruben [10, 11]
and Morrice and Bardhan [12]. In addition,
Minsan and Anussornnitisarn [13] stated
that FDE can be used for factor screening
while the simulated annealing method
should be used to search for an optimum.
Therefore, using FDE with simulated
annealing requires fewer iterations than
conventional simulated annealing experiments.

However, FDE can be problematic
when using the method with discrete
variables such as machines, workers and raw
materials, as making adjustments and
changes to these variables during the
simulation run is quite difficult, that is, there
is a need to do system analysis in order to
find out when the variables can be adjusted
or changed. As a result, this research
employed AFDE to screen the major discrete
factors within the assembly line production
process, as it can be used to screen major
factors - just as the 2% Factorial Design is able
to do, but requires fewer runs.

2. APPLICATION OF FREQUENCY DOMAIN
EXPERIMENTS (AFDE)

Factor screening using AFDE is based
on the simulation of a production system.
This means that if one wants to study the
effects of those input factors that influence
the response, one has to create a simulation
which represents work behavior in the
studied production system. The basic
assumptions of the system model are given

below.

2.1 Basic Assumptions
2.1.1 Polynomial Model
Schruben and Cogliano [7] designated
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relations in the system so as to be k-order
polynomial. For this, consider a simulation
program with p input factors x,, X,,...., X . A
response is designated as a variable y, the
expected response value is E(Y), as afunction
of the xs. Thus, the k-order polynomial can
be represented by Equation 1 below:

e(v)=B,+B 1, +B,T,+.+B,T, ®

or E(Y)=Bo+iﬁj’tj ‘

=t

Here,

E(Y)  isthe expected simulation response;

T, isaterm in the k-orderpolynomial,

that is a particular product of the

non-negative integer powers of the

input factors, where the sum of the

exponents is not greater than k (e.g.
2 4 .

k=5, x x, isnot such aterm because

2+4 is greater than 5);

is the coefficient for term T, ; and

q is the number of potential terms in
the prospective model.

If the estimated value of a particular B,

is not significantly different from zero, then
one can conclude that the corresponding term

T, need not be included in equation (1).

2.1.2 Response Variable

The response variable is collected over
a period of time and is represented by
the equation below. If p is the number
of factors to be considered over a certain
period of time (t); for example, tis a working
day, then when t is increased one working
day is added. The response variables in the
system for time range t will not be related
to each other and there will be no lag time.

Where t is the time range 1 to n, the
polynomial terms for all the response
functions q can be represented as follows:
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Tj(t)=ﬁ[xi ] " where i=1,..q. @

=

Here,
x,(t) istheinputattimet, where j=1,..p

andt = 12,....n;
q isthetotal term of all the response
functions; and

€ are positive integers.

The response variable equation will be
in the form of a time-invariant linear
combination, as follows:

y(0=3 07, ()+&(D), ®

=

where h, is the weighting or impulse response

function identical to the input of T,(1) ;and

&(1)is the random noise of the system at time
t,wheret = 1, 2,...n.

The equation (3) is called the ‘Dynamical
Response Surface Model’. There will be no
consideration of a time lag in the system; thus,
if the response variable can be represented in
polynomial equation and the two requirements
mentioned above are met, it is possible to
conduct AFDE.

2.2 Setting the Parameters for AFDE
2.2.1 Driving Frequency Assignment ()
When selecting the driving frequency
(cycles/observation) for the factors in the
simulation, every factor must be assigned a
different frequency. Where n is the number
of required items of data in an experiment,
the analysis of frequency domain spectrum
of will not be precise if its value is lower
than 1/n. The maximum value for frequency
spectrum analysis is 0.5. The driving frequency
for the factors must be in the range
1/n<®<0.5. In addition, to set a different
a value for for each factor, if one is to
consider the interaction terms and k-order
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polynomial terms of the factors; for
example the quadratic polynomials, there
must be additional methods used.

Jacobson et al. [14] conducted research
on the unique frequency assignments for
discrete-event simulations - their study
investigating 21 factors for quadratic (k = 2-
order) polynomials and eleven factors
for cubic (k = 3-order) polynomials.

2.2.2 Selection of Amplitudes for the
Driving Frequencies (a)

The selection of amplitudes for the
driving frequencies is essential to understand
the magnitude of the response spectrum,
meaning that the level of response spectrum
is proportional to the factor spectrum level
of the same frequency. If the amplitude
adopted is too small, the resulting oscillation
effects will also be too small to be detected.
In contrast, if the amplitude is too large,
the input factor value will be beyond the
possible range. Jacobson [15] researched the
influence of amplitude selection for three
determinants: 1) feasibility 2) noise, and
3) higher-degree polynomials. The research
found that a small amplitude can restrict the
factor value within the feasible range when
the degree polynomial is low, and that in
order to diminish the noise effect, it is
important to choose an amplitude that is as
large as possible. However, the effect of
the three overlapping determinants is not
congruent; therefore, when determining the
amplitude, consideration of each determinant
should be made in this specific order:
feasibility, the degree of polynomial and
the noise, respectively.

L. Determination of a Factor’s Range for a
Continuous Input Factor.

As with classical experimental designs,
the researcher must specify a range of values
for each input factor. The experimental
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region takes the form of a p-dimensional
rectangle:
{(xl,xz,...,xp)‘Li <x, SU.‘}. @
ere,
L, is the minimum value of the factor
i,i=1,..,p;and
U, is the maximum value of the
factor
i,i=1,..,p;
Amplitudes are selected so that each
input is factored over its entire range of

values. The value for the input factor X, ,
at simulated time t, is:

(U +L) (U,—L)
e e c0s(2TTM. 1) . (5)

x (D=
2 2

II. Determination of a Factor’s Range for
a Discrete Input Factor.

However, when considering factors
with discrete data, the equation differs from
that for (4) and (5), and can be defined as
follows:

1 cos(2TTM,1)

P(x (D=a)=—+ 6)
2

2
The probability for each factor value, x, (1),
is assigned as shown below:

p(x, (1)) Value
0-0.24 a
0.25-0.49 a,
0.5-0.74 3
0.75-0.99 a,

where a,a,,a, and a, area constant value.
2.2.3 Determination of the Length of
Experiment (L)

In AFDE, the length of the experiment
is independent of the number of factors,
which is different from FDF where the
length of the experiment is related to the
number of factors. The length of AFDE
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can be determined according to the
simulation model; however, it should be
in a steady state after it has passed the
warm-up period or transient state. At the
beginning of the experiment, the response
data can vary and the effectiveness of the
system may not be fully revealed. Thus, to
make the selection of the factors more
reliable, the length of the experiment should
be enough to reach a steady state.

2.2.4 Determination of the Number of
Simulation Runs (n)

The number of simulation runs should
be adequate and can be determined
according to the run numbers suggested by
Jacobson et al. [14], who developed an
algorithm to determine the length of an
experiment using FDE. However, the
suggested method can also be used for
AFDE, and yields the same results - as
shown in Table 1.

According to Table 1, the driving
frequency set is divided by the number of
runs; for example, two factors select the
driving frequency set {1,4}, so

®, =1/14 and ©, =4/14 ., efc.

According to the set parameter @,a,L
and n, the AFDE can be illustrated in
Figure 1.

2.3 Computer Simulation

In this experiment, a computer
simulation was developed according to the
set model, and input factors assigned to be
variables according to the parameters for
AFDE. Response data was then collected
for each simulation run.

2.4 Time-Frequency Domain Transfor-
mation

From the responses data collected,
the time domain data was transformed
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to frequency domain data in order to in Auxerre, France [16].

study the spectrum. The Fourier Transform Fourier analysis is divided into four
technique was used for the time-frequency  categories: 1) Continuous-time Fourier Series:
transformation, a technique developed by ~ CFS, 2) Discrete-time Fourier Series: DFS,
a French mathematician, Jean Baptiste 3) Continuous-time Fourier Transform: CFT,
Joseph Fourier (1768-1830) who was born  and 4) Discrete-time Fourier Transform: DFT.

Table 1. Number of runs or replications with the quadratic polynomial equation assigned.

Factors (p) Set of Driving Frequency Runs
2 {1,4} {2,3} 14
3 {1,5,8} {1,4,11} {3,4,13} 28

{3,5,12} {8,9,13} {9,11,12}
4 {1,4,10,17} {6,8,9,13} {2,3,11,18} 46
{4,5,7,20} {3,5,12,16} {2,9,10,15} {1,6,16,19}

5 {1,4,13,19,29} {4,5,7,20,26} {2,5,11,25,26} 69
6 {1,11,28,31,35,49} {3,4,13,28,40,42} {4,9,10,21,37,44} 103

{6,32,40,42,43,47} {8,15,18,20,29,42} {10,12,15,21,28,29}
{11,27,35,36,48,50} {16,23,24,43,45,49} {20,24,30,42,45,47}
7 {1,41,19,31,44,53,60} {4,7,9,24,30,49,59} {1,9,14,21,40,46,57} 130

{1,7,18,22,27,57,60} {2,3,12,29,37,50,57} {7,9,17,20,32,62,63}
{3,7,19,28,30,43,48} {1,10,16,29,34,37,41} {3,8,10,27,41,42,63}
{2,17,22,23,30,33,59} {6,9,19,20,36,41,43} {6,31,40,47,51,61,64}

{3.21,41,49,50,54,64} {10,11,36,44,49,51,63}{8,33,47,48,51,53,60}
{11,16,17,20,46,59,61} {10,11,18,23,37,53,62} {19,29,30,33,54,56,6 1}
{11,14,23,24,29,31,50} {21,27,34,51,56,59,60} {12,17,21,27,40,47,58}
{31,32,38,40,43,53,57} {20,33,37,42,43,58,61} {23,28,38,47,49,50,63}

8 {10,16,29,33,38,40, 41,75} 168
9 {8,30,33,39,40,44,57,59,94} 209
10 {10,12,13,27,31,59,65,94,101,110} {2,15,22,23,47,56,75,83,121,126} | 268
11 {9,21,22,26,32,46,55,105,117,135,166} 340
12 {27,44,56,57,59,63,77,102,124,150,155,219} 448
3 {29,37,39,43,44,55,64,77,96,166,208 211,257} 565
14 {29,42,53,57,62,63,65,79,109,140,210,242,269,310} 675
15 {20,28,32,41,42,47,58,65,145,176,179,222,247,298,342} 780
16 {29,38,46,48,49,53,71,83,110,176,217,223,302,358,372,427} 942
17 {37,46,63,66,67,73,78,91,122,160,162,239,309,325,377,430,495} | 1,052

18 | {37,53,78,86,87,89,93,107,117,155,190,236,255,318,377,453,475,574} | 1,208
19 |{18,38,42,45,47,53,70,86,96,163,197,218,299,300,372,429,469,589,620} | 1,398
20 {15,29,37,40,41,46,64,100,148,167,195,257,291,329,382,447, 1,558
535,608,705,707}
21 |{31,3248,57,59,67,71,100,113,06,221,266,315,389,407,493,570,576,716,767,774Y 1,834
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In AFDE, the DFT technique is used
to transform time to frequency domains,
because the received signal is not a period
but a discrete amount of time. It 1s a
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Figure 1. AFDE Process.

the response at the simulated time t, n is the
number of simulation runs, F=®n , and if n
is an even number then F = 1,23

andF=®(n—1),and if n is an odd number,
thenF =1,2,3

.......

with the Fast Fourier Transform (FFT)

algorithm. In general, the FFT algorithm
can make the DFT calculation faster [17].

The transformation of the time
domain to a frequency domain can be

processed as follows:

y(F)Z\/a; +b; ,where1/2<

a, = Z(y(t)cos((t—'l)ZTE(D)) ,

=1

b, = 2 (y(®sin(t—1)27®)),

t=1

where, y(F) is the amplitudinal spectrum
of the driving frequency at position F, y(t) is

2.5 Concluding Method

The analysis and conclusions regarding
the significant factors in this study were based
on graphs of the spectrum derived from
the time-frequency transformation. The
technique for graph reading in FDE and
AFDE is the same; it is based on the
height of the spectrum graph. If one driving
frequency of the factor is significant (a high
spectrum value), then the input factor
is considered as an influence on the
response. On the other hand, insignificant
driving frequencies are considered
conversely.

However, determination of the input
factors can also be carried out by using

®=<0.5,(7)



178

a statistical analysis with replications, and
the response variables to be studied can
be tested statistically, as Sanchez et al. [18]
have shown in an experiment using four
replications and FDE, and comprising a
signal run with three replications and a
noise run with one replication prior to a
statistical test; for example. Nevertheless,
the repetition of an experiment will result

Table 2. Processing time at each workstation.
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in an increased number of experiments;
therefore, this research will analyze the
influence of input factors through the use
of graphs.

3. EXPERIMENT
3.1 Case Study: Assembly System

This study used an assembly line

production process as a model for factor

Processing Time of Workstation(S) (time unit is seconds)
Scenario |Experiments | §1 | S2 S3 S4 S5 S6 S7 S8 S9| Si10
1 10| 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10
10 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10
3 10 | 10 10 | 10 [ 10 | 10 | 10 | 10 | 10
A 4 10| 10| 10 10 | 10 | 10 | 10 | 10 | 10
§ 5 10| 10| 10 | 10 10 | 10 | 10 | 10 | 10
3 6 10| 10] 10 | 10 | 10 10 | 10 | 10 | 10
i 7 10| 10| 10 | 10 | 10 | 10 10 | 10 | 10
8 10| 10| 10 | 10 | 10 | 10 | 10 10 | 10
9 10| 10| 10 | 10 | 10 | 10 | 10 | 10 10
10 10| 10| 10 | 10 | 10 | 10 | 10 | 10 | 10
11 10 | 10 | 10 | 10 | 10 | 10 |
12 10 | 225 10 | 10 | 10 | 10 10
13 10 | 225 10 | 10 | 10 10 | 10
~ 14 10 | 10| 10 | 10 10 | 10 | 10 | 225
2 15 10 |10 10 | 10 | 10 | 10 | 10
g 16 10 | 225 10 | 10 | 10 | 10 | 10 | 10
3 17 10 10 | 10 | 10 | 225 10
18 10 10 10 | 10
19 10 10 10 | 10
20 10 10 | 10 | 10 | 10
21 and 31 " 25/1625] 10 | 10 | 10
22and32 | 10 | 10 | 1625 10 | 10
X 23and 33 | 10 10 | 10 | 10
g 24and 34 | 10 25| 10 ]| 10
9 25and 35 10 [225] 10
g | 26and36 | 10 10 |16.25] 10
sl 27and37 | 10 ‘
28and 38 | 225 10
29 and 39 16.25
]
30 and 40 10
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screening using AFDE, and the computer
software Arena Version 12.0 was used to
create the computer simulations for the
model. The study assembly line produced
one type of product and there were ten
workstations assigned to be the study factors.
Each workstation had between one and
five machines for the workers to control,
and the number of machines installed at
each workstation was determined by the
workers based on their importance. The study
aimed to find out which workstations were
important, in other words, which were
bottleneck workstations in the production
line. This meant that if the workstation had
only a few machines; for example, one, the
workstation would yield a small number of
outcomes, and in contrast, if the workstation
had more machines; for example, five,
more outcomes would be produced out
of the workstation. For the unimportant
workstations, the number of machines would
not affect the production line, or would
have little effect on the production outcomes.

3.2 Experimental Design

In this experiment, there were three
main studies carried out within the assembly
line production process: 1) A Major Factor
Study, 2) Impact Ranking Major Factors Study,
and 3) Sensitivity Impact of Factors Study.
The first study was designed for the
experiment under scenario 1, the second study
was designed for the experiment under
scenarios 2 and 3, and the last study was
designed for the experiment under scenario
4. For each scenario, the parameters were
set for the production system. The set
parameters included: 1) Inter-arrival time of
materials at the production line’s start-point-
an exponential distribution with a mean of
ten seconds, and 2) the processing time of
the machines - a normal distribution with a
mean as shown in Table 2 and an SD value
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of five seconds for each workstation.
The four scenarios used are summarized in

Table 2.

3.2.1 A Major Factor Study

This study was used with Scenario 1,
in which AFDE was tested for its ability to
detect a single significant factor - a bottleneck
workstation in an assembly line with
ten workstations. Ten experiments (1 to 10)
were conducted, and for each experiment
a bottleneck workstation was assigned to
the experiment - from workstations 1 to 10,
respectively.

3.2.2 Impact Ranking Major Factors
Study

This study was used with Scenarios 2
and 3, in which AFDE was tested for its
ability to detect significant factors, these
being the workstations with the longest
and second longest processing time. Ten
experiments (11 - 20) were conducted, and
a random two workstations selected for each
experiment to have the longest and second
longest processing time. For example, in
Experiment 11, workstation 1 was assigned
to have the longest processing time (35
seconds), and workstation 10 was assigned
to have the second longest processing time
(22.5 seconds).

In Scenario 3, AFDE was tested for its
ability to detect significant factors, there
being the workstations with the longest,
second longest and third longest processing
times. Ten experiments (21 - 30) were
conducted, and three workstations were
randomized for each experiment in order
to have the longest, second longest and
third longest processing times. For example,
in Experiment 25, workstation 1 was
assigned to have the longest processing
time (35 seconds), workstation 5 was assigned
to have the second longest processing time
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(22.5 seconds), and workstation 10 was
assigned to have the third longest processing
time.

3.2.3 Sensitivity Impact of Factors Study
For Scenario 4, AFDE was tested for
its ability to detect significant factors, these
being those workstations with the longest,
second longest and third longest processing
times. At the third order, a break was assigned
to the workstation when the process had
been running for sixteen hours - the break
being eight hours in duration. Ten experiments
(31-40) were conducted and the parameters
of the experiment assigned to be the same as
for Scenario 3. For example, in Experiment
31, workstation 3 had the third longest
processing time (16.25 seconds). When this
workstation had run for sixteen hours, it
had to have an eight hour break. There was
an attempt made to add complexity to the
system by letting AFDE detect a bottleneck
workstation which needed to be changed.
The simulation was conducted for 24
hours per day for a total of seven days, and
the number of products coming off the
production line was studied as a response.
The interesting point to note from this
experiment is that the workstation had an
affect on the studied response, so that the
worker involved needed to pay attention.
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3.3 Arena System

The computer software Arena Version
12.0 was used to create the computer
simulations in this model (see Figure 2).
The set parameters in the software included:
Inter-arrival Time

The inter-arrival time of the materials at
the production line start-point followed an
exponential distribution, with a mean of ten
seconds used which, throughout the research,
remained unchanged.

Processingtime

The processing time of the machines
was assigned to follow a normal distribution,
with a mean as shown in Table 2 and with
an SD value of five seconds for every
workstation. The average processing time per
product for each workstation was changed
in the program in accordance with the
relevant experiment being carried out, and
the processing time was divided into four
levels, these being;

1) Ten seconds - representing normal
production levels, 2) 35 seconds - representing
an additional 25 seconds processing time
per product at a workstation, to create the
greatest bottleneck conditions for the
workstations, 3) 22.5 seconds, obtained by
reducing the bottleneck time by a half,
that is 10 + (35-10)/2, and representing
additional processing time at the workstations
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to create a second bottleneck, and 4) 16.25
seconds, obtained based on a reduction in
the second bottleneck time by a half, that
is 10 + (22.5-10)/2 and representing
additional processing time at the workstations
to create a third bottleneck.
The Number of Machines

The number of machines at each
workstation was assigned as a discrete
variable factor to be studied. As a result,
a change in the number of machines at
each workstation in the Arena program
was derived from the driving frequency
developed during the AFDE setting process,
as discussed in the next section.

3.4 AFDE Setting

3.4 1 Driving Frequencies (®)
Non-repeated frequencies were assigned

to each of the total ten factors, as follows:

® =10/268 of workstation 1 (S1),

@, =12/268 of workstation 2  (S2),
®,=13/268 of workstation 3  (S3),
®,=27/268 of workstation 4  (S4),
m,=31/268 of workstation 5  (S5),
®,=59/268 of workstation 6  (S6),
o, =65/268 of workstation 7 (S7),
®,=94/268 of workstation 8  (S8),
o, =101/268 of workstation 9 (S9)and

o, =110/268 of workstation 10 (S10).
3.4.2 Amplitudes (a)

There was only one type of product
assembled in this model; the assembly
line consisted of ten workstations where
each workstation had one to five machines
for workers to control. The production
control worker was the one who considered
the number of machines in each workstation,
based on the importance of that workstation.
As a result, the minimum amplitude of each
workstation or factor was set as 1 and the
maximum amplitude of each workstation or
factor was set as 5.
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3.4.3 Length of each Experiment (L)
This assembly line model ran 24 hours

a day for a total seven days; long enough to

pass the warm-up period or transient state.

3.4.4 The Number of Simulation Runs (n)

The number of runs was n=268. When
considering seven days as one run, the
total number of runs was 268 weeks, where
each week was not related to any other.

With 268 runs, and the product
from the production system considered
a variable of the studied response, the
data for each experiment had to be
collected from 268 production systems.
The collected data was placed into the
time-frequency transformation, and the
results from the transformation - 134
frequencies, used to create graphs. After
this, the analysis was conducted.

4. RESULTS

The study results are divided into four
sections, as follows:
4.1 Analysis Method

The computer simulation yielded
results as shown in Figures 3, 4, 5 and 6.
Figure 3 shows the results of Scenario 1,
Figure 4 shows the results of Scenario 2,
Figure 5 shows the results of Scenario 3 and
Figure 6 exhibits the results of Scenario 4.

The data in Figures 3 to 6 is based
on the analysis methods shown below.

According to Figure 7, in Experiment 1
- where the y axis is spectral power and the
x axis is ® (x divided by 268) at different
levels, it is apparent that @ =10/268 is the
most significant. That is, in Experiment 1
workstation 1 was the bottleneck workstation
that affected yields. If workstation 1
had fewer machines, the yield would also
have been lower. In contrast, if workstation
1 had been given a higher number of
machines, the yield would have been higher.
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Figure 3. Study results of AFDE for Scenario 1.
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Figure 5. Study results of AFDE for Scenario 3.
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Figure 6. Study results of AFDE for Scenario 4.
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According to Figure 8, in Experiment
17 and from the graphs, it is clear that the
most significant factor is , =65/268 and the
second most significant factor is o, = 59/268.
That is, in Experiment 17, workstation 7
was the bottleneck workstation that had
the most significant influence on the yield,
and workstation 6 had the second most
significant influence.

Spectral Power

4,000,000 - 1
3,000,000 | *
2,000,000 -
1,000,000 - N

0 20 40
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According to Figure 9, in Experiment 25
and from the graphs, it is apparent that when
considering only the main effect, o, =10/268
for workstation 1 was the most significant,
,=31/268 for workstation 5 was the second most
significant, and o, =110/268 for workstation 10

was the third second most significant. Further-
more, AFDE was able to detect quadratic effects

at  =20/268, 48/268 and 62/268 for work-
stations 1, 5 and 10, respectively.

Experiment 1

\ Main Effect is Workstation 1
& )
g W

60 80 100 120

Figure 7. Experiment 1.
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Figure 8. Experiment 17.
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Figure 9. Experiment 25.



Chiang Mai J. Sci. 2012; 39(2)

It was also able to detect interaction
effects among the workstations as follows:
®=21/268, and41/268, that is the

interaction effects of workstations 1 and 5,
and ® = 120/268 the interaction effects of
workstations 1 and 10. A study of the main
effects, quadratic effects and interaction
effects can be used to create a model for
forecasting the response variables; however,
this study focused most attention on the
main effects of the workstations.

The results from Experiments 1, 17 and
25 and other results from the experiment
will be discussed in the next topics.

4.2 A Major Factor Analysis

The study results from Scenario 1, as
shown in Table 3, show that AFDE detected
the ten bottleneck workstations with 100%
accuracy. For the workstation with the longest
processing time, the driving frequency (o)

Table 3. Results of AFDE for Scenario 1.
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of the factor had the most significant
spectrum. Tt is thus apparent that the frequency
domain method can accurately screen those
discrete major factors that are crucial for the
production process.

4.3 Impact Ranking Major Factors
Analysis

According to the study results from
Scenario 2, as shown in Table 4, when
considering Experiment 11 to 20 in Scenario 2,
it was found that Experiments 11 to 20

yielded the planned results. For the workstation
with the longest processing time, the driving

frequency () of the factor had the most
significant spectrum. For the workstation
with the second longest processing time,
the driving frequency (o) of the factor
had the second most significant spectrum.
In Scenario 3 of Experiments 21 to 30, as
shown in Table 5, the result was also as
planned.

, The Longest Processing Time | AFDE Result for the Bottleneck | AFDE
EXp eriment Workstation Workstation Corrected
1 S1 S1 100%
2 S2 S2 100%
3 S3 S3 100%
4 S4 S4 100%
5 S5 S5 100%
6 S6 S6 100%
7 S7 S7 100%
8 S8 S8 100%
9 S9 S9 100%
10 S10 S10 100%
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Table 4. Results of AFDE for Scenario 2.
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Experiment | The Longest Processing Time | AFDE Result for the Bottleneck AFDE
Workstation Workstation Corrected
11 S1>S10 S1> 810 100%
12 S8 > 82 S8 > 82 100%
13 S7>8S3 S7>83 100%
14 S5 >S9 S5> 89 100%
15 S4 > S10 S$4 > S10 100%
16 S6 > 82 S6 > 82 100%
17 S7 > S6 S7 > Sé6 100%
18 S4 > S8 S4 > S8 100%
19 $4 >S9 $4 >S9 100%
20 S10 >S9 S10 >S9 100%
Table 5. Results of AFDE for Scenario 3.
Experiment | The Longest Processing Time | AFDE Result for the Bottleneck AFDE
Workstation Workstation Corrected
21 §$1>S2>8S3 S1>82>8S3 100%
22 S4> S8 >8S3 S4>S8>8S3 100%
23 §10 >S9 > S8 §10 >S9 > S8 100%
24 S10 >S4 > S7 S10 >S4 > S7 100%
25 S1 >S5 > S10 §1>S5>S10 100%
26 S2>89>S5 §$2>89>S5 100%
27 S4 >S5 > S8 S4 >S5 > S8 100%
28 S10 > S1 > S2 §10 > S1 > S2 100%
29 S2 > S8 >S4 S2> 88> 54 100%
30 S$2>8S83>57 $2>83>87 100%
Table 6. Results of AFDE for Scenario 4.
Experiment | The Longest Processing Time | AFDE Result for the Bottleneck Ranking
Workstation Workstation Change
31 S1> 82 > S3% §1>83*>S2 Yes
32 S4 > S8 > S3* $4 > S3* > S8 Yes
33 S10 > S9 > S8* §10 > S8* > S9 Yes
34 S10 > S4 > S7* S10 > S7*% > S4 Yes
35 S1> 85 > S10* S1 > S10* > S5 Yes
36 §2 > §9 > S5* S2 > 85* > 59 Yes
37 S4 > S5 > S8* S4 > S8* > S5 Yes
38 S10 > S1 > S2% S10 > S2* > S1 Yes
39 S2 > S8 > S4* S2 > S4* > S8 Yes
40 §2 > S3 > S7* S2 > 83 > S7* No

*an 8-hour break after the work was run for 16 hours,
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4.4 Sensitivity Impact of Factors
Analysis

According to the study results from
Scenario 4, as shown in Table 6, the inter-arrival
time and processing time parameters were
assigned to be the same as in Scenario 3.
However, the workstation with the third
longest processing time was given an eight
hour break after it had run for sixteen hours.
The experiment was conducted ten times, that
is, Experiments 31 to 40. The results show
that the workstation breaks in Experiments
31 to 39 had an effect on production yield,
meaning that AFDE can detect the results of
workstation breaks. As a result, if a
workstation is assigned as having a break, it
has more influence on the production system.
The bottleneck workstation in the third order
became the bottleneck workstation in the
second order, and it was only in Experiment
40 under Scenario 4 that the order of the
bottleneck workstation was not different
from Experiment 30 under Scenario 3.
However, in Experiment 40 under Scenario
4, the spectral power of the workstation with
the third longest processing time was closer
to the workstation with the second longest
processing time. It is thus apparent that AFDE
is sensitive in terms of detecting the
importance of factors.

5. CONCLUSIONS AND RECOMMENDATIONS

In the study, AFDE was able to detect
bottleneck workstations in the production
system, and when assigning the system to have
one, two or three bottleneck workstations in
a respective order, AFDE was also able to
detect those bottleneck workstations and
order their importance - with 100% accuracy.
Moreover, AFDE was also able to detect the
influence of processing times and machine-
breaks on the production system. The
workstation where there was a machine break
was more crucial in terms of the production
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yield. According to this study, it can be
concluded that AFDE can detect the impacts
on the production system of having both one
bottleneck workstation and two or three
bottleneck workstations, the interaction
between workstations, and the influence that
changes in the performance of work stations
has on those factors which are the result of
any changes in the workstations. For those
changes that occurred in the study system, as
mentioned previously, although the control
worker could not see the changes while he
was working, AFDE was still able to detect
any significant changes that took place.

It can be concluded that AFDE is an
effective factor screening tool, one that has
the ability to detect system influences from
major factor to single-factor cases, plus the
ability to detect and order the major factors
in a system that have unequal significance
factors. Although there were many interesting
factors that could have been studied, only a
few simulation runs were conducted, though
the results are as good as those when using
the 2% Factorial Design method. According
to Table 7, in the study AFDE conducted a
total 268 simulation runs for ten discrete
variable factors. If this study had used the 2*
Factorial Design method for factor screening,
219 or 1,024 simulation runs would have been
required. In the 2* Factorial Design method,
each simulation needs to be replicated, so with
two replications there would have been a total
of 2,048 simulation runs required. It is
apparent; therefore that the use of AFDE
becomes more significant when the number
of input factors is increased, because the
increased number of factors has only a small
effect on the number of runs required.

However, it is noticeable that AFDE may
not be necessary when screening continuous
factors, because the traditional FDE method
requires only two to three runs to occur for
factor screening. Thus, researchers have to
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make a decision on the factor screening
method to use according to their simulation
requirements. Nevertheless, AFDE can be
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used for screening both continuous and
discrete factors without needing to study value
changes during processing, as with FDE.

Table 7. Theoretical comparison of simulation runs.

No. of Simulation Runs
Factors FDM Conventional Factorial Design
Full FactorialDesign |3 Factorial Design|2* Factorial Design
FDE* | AFDE | (2Replications) | (2 Replications) (2 Replications)
2 =2 14 50 18 8
3 =2 28 250 54 16
4 =2 46 1,250 162 32
5 > 2 69 6,250 486 64
6 =2 103 31,250 1,458 128
7 =2 130 156,250 4,374 256
8 =2 168 781,250 13,122 512
9 =2 209 3,906,250 39,366 1,024
10 =2 268 19,531,250 118,098 2,048
11 =2 340 97,656,250 354,294 4,096
12 =2 448 488,281,250 1,062,882 8,192
13 =2 565 2,441,406,250 3,188,646 16,384
14 > 2 675 12,207,031,250 9,565,938 32,768
15 22 780 61,035,156,250 28,697,814 65,536
16 =2 942 305,175,781,250 86,093,442 131,072
17 =2 1,052 | 1,525,878,906,250 258,280,326 262,144
18 =2 1,208 | 7,629,394,531,250 774,840,978 524,288
19 =2 1,398 | 38,146,972,656,250 | 2,324,522,934 1,048,576
20 =2 1,558 |190,734,863,281,250( 6,973,568,802 2,097,152
21 =2 1,834 1953,674,316,406,250| 20,920,706,406 4,194,304

* FDE can be problematic when using the method with discrete variables such as machines,
workers and raw materials, as it is quite difficult to make adjustments and changes to these

variables during the simulation run.

AFDE can be used for factor screening
in the form of visual experiments and actual
experiments, but if AFDE is used in an actual
experiment, it might not be convenient in
terms of driving frequency assignments, and
experimental and calculation methods, and this
may confuse the practitioner. AFDE is thus
suitable for factor screening in cases where
there are many factors and many runs are

required, but it may not be appropriate for
an actual experiment. Those who are
interested in adopting the method should
therefore carefully consider its appropriateness.

AFDE can be used to seek the optimal
value in two ways: 1) By searching for the
optimal value together with factor screening;
for example, when Minsan and
Anussornnitisarn [13] applied FDE to screen
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continuous factors, they suggested using
Simulated Annealing for finding the optimal
value, together with reducing the number of
continuous factors. This methodology can
help reduce the number of searches required
if the studied case contains non-significant
factors, and
2) By searching for the optimal value after
using AFDE for factor screening. Of these
two application methods, we suggest that the
first is less flexible but requires a low number
of searches. The second method is more
flexible, because after factor screening has been
completed and another method can be used
to search for the optimal values; however, this
method requires a higher number of searches.
In addition, we recommend that using
AFDE is inconvenient at this time, since it
requires many calculating programs to be used.
If instant software or instant programs are
developed, AFDE will become more
popular.
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